Cargando…
EqSpike: spike-driven equilibrium propagation for neuromorphic implementations
Finding spike-based learning algorithms that can be implemented within the local constraints of neuromorphic systems, while achieving high accuracy, remains a formidable challenge. Equilibrium propagation is a promising alternative to backpropagation as it only involves local computations, but hardw...
Autores principales: | Martin, Erwann, Ernoult, Maxence, Laydevant, Jérémie, Li, Shuai, Querlioz, Damien, Petrisor, Teodora, Grollier, Julie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7970361/ https://www.ncbi.nlm.nih.gov/pubmed/33748709 http://dx.doi.org/10.1016/j.isci.2021.102222 |
Ejemplares similares
-
Scaling Equilibrium Propagation to Deep ConvNets by Drastically Reducing Its Gradient Estimator Bias
por: Laborieux, Axel, et al.
Publicado: (2021) -
Using Memristors for Robust Local Learning of Hardware Restricted Boltzmann Machines
por: Ernoult, Maxence, et al.
Publicado: (2019) -
Event-driven contrastive divergence for spiking neuromorphic systems
por: Neftci, Emre, et al.
Publicado: (2014) -
Precise Spiking Motifs in Neurobiological and Neuromorphic Data
por: Grimaldi, Antoine, et al.
Publicado: (2022) -
Synaptic metaplasticity in binarized neural networks
por: Laborieux, Axel, et al.
Publicado: (2021)