Cargando…
Machine learning approaches for the prediction of soil aggregate stability
Currently, many Pedotransfer Functions (PTFs) are being developed to predict certain soil properties worldwide, especially for difficult and time-consuming parameters to measure. However, very few studies have been done to assess the feasibility of using PTFs (regression or machine learning methods)...
Autores principales: | Bouslihim, Yassine, Rochdi, Aicha, El Amrani Paaza, Namira |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7970365/ https://www.ncbi.nlm.nih.gov/pubmed/33748507 http://dx.doi.org/10.1016/j.heliyon.2021.e06480 |
Ejemplares similares
-
Rapid Prediction of Fig Phenolic Acids and Flavonoids Using Mid-Infrared Spectroscopy Combined With Partial Least Square Regression
por: Hssaini, Lahcen, et al.
Publicado: (2022) -
Predictive Maintenance in Building Facilities: A Machine Learning-Based Approach
por: Bouabdallaoui, Yassine, et al.
Publicado: (2021) -
Machine‐Learning‐Assisted Accurate Prediction of Molecular Optical Properties upon Aggregation
por: Xu, Shidang, et al.
Publicado: (2021) -
Machine Learning Prediction Models to Evaluate the Strength of Recycled Aggregate Concrete
por: Yuan, Xiongzhou, et al.
Publicado: (2022) -
Aggregation Strategy on Federated Machine Learning Algorithm for Collaborative Predictive Maintenance
por: Bemani, Ali, et al.
Publicado: (2022)