Cargando…
In Silico Prediction of Fraction Unbound in Human Plasma from Chemical Fingerprint Using Automated Machine Learning
[Image: see text] Predicting the fraction unbound of a drug in plasma plays a significant role in understanding its pharmacokinetic properties during in vitro studies of drug design and discovery. Owing to the gaining reliability of machine learning in biological predictive models and development of...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7970465/ https://www.ncbi.nlm.nih.gov/pubmed/33748592 http://dx.doi.org/10.1021/acsomega.0c05846 |
Sumario: | [Image: see text] Predicting the fraction unbound of a drug in plasma plays a significant role in understanding its pharmacokinetic properties during in vitro studies of drug design and discovery. Owing to the gaining reliability of machine learning in biological predictive models and development of automated machine learning techniques for the ease of nonexperts of machine learning to optimize and maximize the reliability of the model, in this experiment, we built an in silico prediction model of a fraction unbound drug in human plasma using a chemical fingerprint and a freely available AutoML framework. The predictive model was trained on one of the largest data sets ever of 5471 experimental values using four different AutoML frameworks to compare their performance on this problem and to choose the most significant one. With a coefficient of determination of 0.85 on the test data set, our best prediction model showed better performance than other previously published models, giving our model significant importance in pharmacokinetic modeling. |
---|