Cargando…
In Silico Prediction of Fraction Unbound in Human Plasma from Chemical Fingerprint Using Automated Machine Learning
[Image: see text] Predicting the fraction unbound of a drug in plasma plays a significant role in understanding its pharmacokinetic properties during in vitro studies of drug design and discovery. Owing to the gaining reliability of machine learning in biological predictive models and development of...
Autores principales: | Mulpuru, Viswajit, Mishra, Nidhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7970465/ https://www.ncbi.nlm.nih.gov/pubmed/33748592 http://dx.doi.org/10.1021/acsomega.0c05846 |
Ejemplares similares
-
Immunoinformatic based identification of cytotoxic T lymphocyte epitopes from the Indian isolate of SARS-CoV-2
por: Mulpuru, Viswajit, et al.
Publicado: (2021) -
Computational Identification of SARS-CoV-2 Inhibitor in Tinospora cordifolia, Cinnamomum zeylanicum and Myristica fragrans
por: Mulpuru, Viswajit, et al.
Publicado: (2021) -
Identification of SARS-CoV-2 inhibitors through phylogenetics and drug repurposing
por: Mishra, Anamika, et al.
Publicado: (2022) -
Development of an in silico prediction system of human renal excretion and clearance from chemical structure information incorporating fraction unbound in plasma as a descriptor
por: Watanabe, Reiko, et al.
Publicado: (2019) -
Discovery of Novel Coumarin Analogs against the α-Glucosidase Protein Target of Diabetes Mellitus: Pharmacophore-Based QSAR, Docking, and Molecular Dynamics Simulation Studies
por: Maurya, Akhilesh Kumar, et al.
Publicado: (2020)