Cargando…
FSS superstrate antenna for satellite cynosure on IoT to combat COVID-19 pandemic
The global pandemic, COVID-19 needs joint techniques and technology to combat it. The internet of things (IoT) has been at the forefront in solving problems, not only in the health care sector but in other sectors. It delivers accuracy with robustness in the developing service and application. Howev...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7970793/ https://www.ncbi.nlm.nih.gov/pubmed/34766051 http://dx.doi.org/10.1016/j.sintl.2021.100090 |
Sumario: | The global pandemic, COVID-19 needs joint techniques and technology to combat it. The internet of things (IoT) has been at the forefront in solving problems, not only in the health care sector but in other sectors. It delivers accuracy with robustness in the developing service and application. However, it remains clear that the use of IoT is limited to coverage, longevity, security, connectivity issue, immediacy, and multicasting, we proposed in this paper frequency selective surface (FSS) as superstrate for rectangular microstrip antenna. An FSS design combine with the rectangular microstrip antenna for better performance is placed over FSS parallel configuration. The rectangular microstrip antenna was titled 45 degrees to change the band-stop. Analysis of the proposed performance in terms of gain, return loss, and directivity shows that the FSS structure's integration brings better results. With the help of a 3D electromagnetic computer simulation technology CST studio suite, we model the proposed antenna, perform the simulation with a frequency-domain solver, and validate it with a time-domain solver. The proposed impressive result is suitable for satellite networks, which hybrid with IoT can provide a sustainable long-time solution in fighting the COVID-19 pandemic. |
---|