Cargando…
Masks and distancing during COVID-19: a causal framework for imputing value to public-health interventions
During the COVID-19 pandemic, the scientific community developed predictive models to evaluate potential governmental interventions. However, the analysis of the effects these interventions had is less advanced. Here, we propose a data-driven framework to assess these effects retrospectively. We use...
Autores principales: | Babino, Andres, Magnasco, Marcelo O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7970858/ https://www.ncbi.nlm.nih.gov/pubmed/33664380 http://dx.doi.org/10.1038/s41598-021-84679-8 |
Ejemplares similares
-
Imputing missing distances in molecular phylogenetics
por: Xia, Xuhua
Publicado: (2018) -
Imputation Without Doing Imputation: A New Method for the Detection of Non-Genotyped Causal Variants
por: Howey, Richard, et al.
Publicado: (2014) -
Imputation of adverse drug reactions: Causality assessment in hospitals
por: Varallo, Fabiana Rossi, et al.
Publicado: (2017) -
A causal modelling framework for reference-based imputation and tipping point analysis in clinical trials with quantitative outcome
por: White, Ian R., et al.
Publicado: (2019) -
Missing value imputation in high-dimensional phenomic data: imputable or not, and how?
por: Liao, Serena G, et al.
Publicado: (2014)