Cargando…
Estimating the phase volume fraction of multi-phase steel via unsupervised deep learning
Advanced high strength steel (AHSS) is a steel of multi-phase microstructure that is processed under several conditions to meet the current high-performance requirements from the industry. Deep neural network (DNN) has emerged as a promising tool in materials science for the task of estimating the p...
Autores principales: | Kim, Sung Wook, Kang, Seong-Hoon, Kim, Se-Jong, Lee, Seungchul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7971040/ https://www.ncbi.nlm.nih.gov/pubmed/33723290 http://dx.doi.org/10.1038/s41598-021-85407-y |
Ejemplares similares
-
Complete characterization of ultrafast optical fields by phase-preserving nonlinear autocorrelation
por: Gliserin, Alexander, et al.
Publicado: (2022) -
Model‐informed unsupervised deep learning approaches to frequency and phase correction of MRS signals
por: Shamaei, Amirmohammad, et al.
Publicado: (2022) -
An Embodied Multi-Sensor Fusion Approach to Visual Motion Estimation Using Unsupervised Deep Networks
por: Shamwell, E. Jared, et al.
Publicado: (2018) -
Quantum enhanced multiple-phase estimation with multi-mode N00N states
por: Hong, Seongjin, et al.
Publicado: (2021) -
Mechanical Behavior of Multi-Phase Steels Comprising Retained Austenite
por: Perdahcıoğlu, Emin Semih, et al.
Publicado: (2022)