Cargando…

Predicting how surface texture and shape combine in the human visual system to direct attention

Objects differ from one another along a multitude of visual features. The more distinct an object is from other objects in its surroundings, the easier it is to find it. However, it is still unknown how this distinctiveness advantage emerges in human vision. Here, we studied how visual distinctivene...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Zoe Jing, Lleras, Alejandro, Buetti, Simona
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7971056/
https://www.ncbi.nlm.nih.gov/pubmed/33731840
http://dx.doi.org/10.1038/s41598-021-85605-8
Descripción
Sumario:Objects differ from one another along a multitude of visual features. The more distinct an object is from other objects in its surroundings, the easier it is to find it. However, it is still unknown how this distinctiveness advantage emerges in human vision. Here, we studied how visual distinctiveness signals along two feature dimensions—shape and surface texture—combine to determine the overall distinctiveness of an object in the scene. Distinctiveness scores between a target object and distractors were measured separately for shape and texture using a search task. These scores were then used to predict search times when a target differed from distractors along both shape and texture. Model comparison showed that the overall object distinctiveness was best predicted when shape and texture combined using a Euclidian metric, confirming the brain is computing independent distinctiveness scores for shape and texture and combining them to direct attention.