Cargando…
Transformer-based deep neural network language models for Alzheimer’s disease risk assessment from targeted speech
BACKGROUND: We developed transformer-based deep learning models based on natural language processing for early risk assessment of Alzheimer’s disease from the picture description test. METHODS: The lack of large datasets poses the most important limitation for using complex models that do not requir...
Autores principales: | Roshanzamir, Alireza, Aghajan, Hamid, Soleymani Baghshah, Mahdieh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7971114/ https://www.ncbi.nlm.nih.gov/pubmed/33750385 http://dx.doi.org/10.1186/s12911-021-01456-3 |
Ejemplares similares
-
SCGG: A deep structure-conditioned graph generative model
por: Faez, Faezeh, et al.
Publicado: (2022) -
Improving part-of-speech tagging in Amharic language using deep neural network
por: Hirpassa, Sintayehu, et al.
Publicado: (2023) -
Speech reconstruction using a deep partially supervised neural network
por: McLoughlin, Ian, et al.
Publicado: (2017) -
Emotional Speech Recognition Using Deep Neural Networks
por: Trinh Van, Loan, et al.
Publicado: (2022) -
Acoustic and Language Based Deep Learning Approaches for Alzheimer's Dementia Detection From Spontaneous Speech
por: Mahajan, Pranav, et al.
Publicado: (2021)