Cargando…

Bat target tracking strategies for prey interception

Insectivorous bats capture their prey in flight with impressive success. They rely on the echoes of their own ultrasonic vocalization that yield acoustic snapshots, which enable target tracking on a rapid time scale. This task requires the use of intermittent information to navigate a dynamically ch...

Descripción completa

Detalles Bibliográficos
Autores principales: Salles, Angeles, Diebold, Clarice A., F. Moss, Cynthia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7971241/
https://www.ncbi.nlm.nih.gov/pubmed/33796208
http://dx.doi.org/10.1080/19420889.2021.1898751
Descripción
Sumario:Insectivorous bats capture their prey in flight with impressive success. They rely on the echoes of their own ultrasonic vocalization that yield acoustic snapshots, which enable target tracking on a rapid time scale. This task requires the use of intermittent information to navigate a dynamically changing environment. Bats may solve this challenging task by building internal models that estimate target velocity to anticipate the future location of a prey item. This has been recently tested empirically in perched bats tracking a target moving across their acoustic field. In this report, we build on past work to propose a new model that describes bat flight trajectories employing predictive strategies. Furthermore, we compare this model with a previous model of bat target interception that has also been employed by some visually guided animals: parallel navigation. Abbreviations: HTTP, Hybrid Target Trajectory Prediction; CATD, Constant Absolute Target Direction; CB, Constant Bearing; PN, Parallel Navigation