Cargando…
Machine Learning Approaches Reveal That the Number of Tests Do Not Matter to the Prediction of Global Confirmed COVID-19 Cases
Coronavirus disease 2019 (COVID-19) has developed into a global pandemic, affecting every nation and territory in the world. Machine learning-based approaches are useful when trying to understand the complexity behind the spread of the disease and how to contain its spread effectively. The unsupervi...
Autores principales: | Khan, Md Hasinur Rahaman, Hossain, Ahmed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7971514/ https://www.ncbi.nlm.nih.gov/pubmed/33748745 http://dx.doi.org/10.3389/frai.2020.561801 |
Ejemplares similares
-
Topology Applied to Machine Learning: From Global to Local
por: Adams, Henry, et al.
Publicado: (2021) -
Addressing Fairness, Bias, and Appropriate Use of Artificial Intelligence and Machine Learning in Global Health
por: Fletcher, Richard Ribón, et al.
Publicado: (2021) -
Evaluation of Multiple Machine Learning Models for Predicting Number of Anti-VEGF Injections in the Comparison of AMD Treatment Trials (CATT)
por: Chandra, Rajat S., et al.
Publicado: (2023) -
Air pollution particulate matter (PM2.5) prediction in South African cities using machine learning techniques
por: Morapedi, Tshepang Duncan, et al.
Publicado: (2023) -
Improving Crowdsourcing-Based Image Classification Through Expanded Input Elicitation and Machine Learning
por: Yasmin, Romena, et al.
Publicado: (2022)