Cargando…
Connectivity, reproduction number, and mobility interact to determine communities’ epidemiological superspreader potential in a metapopulation network
Disease epidemic outbreaks on human metapopulation networks are often driven by a small number of superspreader nodes, which are primarily responsible for spreading the disease throughout the network. Superspreader nodes typically are characterized either by their locations within the network, by th...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7971523/ https://www.ncbi.nlm.nih.gov/pubmed/33735223 http://dx.doi.org/10.1371/journal.pcbi.1008674 |
_version_ | 1783666630099730432 |
---|---|
author | Lieberthal, Brandon Gardner, Allison M. |
author_facet | Lieberthal, Brandon Gardner, Allison M. |
author_sort | Lieberthal, Brandon |
collection | PubMed |
description | Disease epidemic outbreaks on human metapopulation networks are often driven by a small number of superspreader nodes, which are primarily responsible for spreading the disease throughout the network. Superspreader nodes typically are characterized either by their locations within the network, by their degree of connectivity and centrality, or by their habitat suitability for the disease, described by their reproduction number (R). Here we introduce a model that considers simultaneously the effects of network properties and R on superspreaders, as opposed to previous research which considered each factor separately. This type of model is applicable to diseases for which habitat suitability varies by climate or land cover, and for direct transmitted diseases for which population density and mitigation practices influences R. We present analytical models that quantify the superspreader capacity of a population node by two measures: probability-dependent superspreader capacity, the expected number of neighboring nodes to which the node in consideration will randomly spread the disease per epidemic generation, and time-dependent superspreader capacity, the rate at which the node spreads the disease to each of its neighbors. We validate our analytical models with a Monte Carlo analysis of repeated stochastic Susceptible-Infected-Recovered (SIR) simulations on randomly generated human population networks, and we use a random forest statistical model to relate superspreader risk to connectivity, R, centrality, clustering, and diffusion. We demonstrate that either degree of connectivity or R above a certain threshold are sufficient conditions for a node to have a moderate superspreader risk factor, but both are necessary for a node to have a high-risk factor. The statistical model presented in this article can be used to predict the location of superspreader events in future epidemics, and to predict the effectiveness of mitigation strategies that seek to reduce the value of R, alter host movements, or both. |
format | Online Article Text |
id | pubmed-7971523 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-79715232021-03-31 Connectivity, reproduction number, and mobility interact to determine communities’ epidemiological superspreader potential in a metapopulation network Lieberthal, Brandon Gardner, Allison M. PLoS Comput Biol Research Article Disease epidemic outbreaks on human metapopulation networks are often driven by a small number of superspreader nodes, which are primarily responsible for spreading the disease throughout the network. Superspreader nodes typically are characterized either by their locations within the network, by their degree of connectivity and centrality, or by their habitat suitability for the disease, described by their reproduction number (R). Here we introduce a model that considers simultaneously the effects of network properties and R on superspreaders, as opposed to previous research which considered each factor separately. This type of model is applicable to diseases for which habitat suitability varies by climate or land cover, and for direct transmitted diseases for which population density and mitigation practices influences R. We present analytical models that quantify the superspreader capacity of a population node by two measures: probability-dependent superspreader capacity, the expected number of neighboring nodes to which the node in consideration will randomly spread the disease per epidemic generation, and time-dependent superspreader capacity, the rate at which the node spreads the disease to each of its neighbors. We validate our analytical models with a Monte Carlo analysis of repeated stochastic Susceptible-Infected-Recovered (SIR) simulations on randomly generated human population networks, and we use a random forest statistical model to relate superspreader risk to connectivity, R, centrality, clustering, and diffusion. We demonstrate that either degree of connectivity or R above a certain threshold are sufficient conditions for a node to have a moderate superspreader risk factor, but both are necessary for a node to have a high-risk factor. The statistical model presented in this article can be used to predict the location of superspreader events in future epidemics, and to predict the effectiveness of mitigation strategies that seek to reduce the value of R, alter host movements, or both. Public Library of Science 2021-03-18 /pmc/articles/PMC7971523/ /pubmed/33735223 http://dx.doi.org/10.1371/journal.pcbi.1008674 Text en © 2021 Lieberthal, Gardner http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Lieberthal, Brandon Gardner, Allison M. Connectivity, reproduction number, and mobility interact to determine communities’ epidemiological superspreader potential in a metapopulation network |
title | Connectivity, reproduction number, and mobility interact to determine communities’ epidemiological superspreader potential in a metapopulation network |
title_full | Connectivity, reproduction number, and mobility interact to determine communities’ epidemiological superspreader potential in a metapopulation network |
title_fullStr | Connectivity, reproduction number, and mobility interact to determine communities’ epidemiological superspreader potential in a metapopulation network |
title_full_unstemmed | Connectivity, reproduction number, and mobility interact to determine communities’ epidemiological superspreader potential in a metapopulation network |
title_short | Connectivity, reproduction number, and mobility interact to determine communities’ epidemiological superspreader potential in a metapopulation network |
title_sort | connectivity, reproduction number, and mobility interact to determine communities’ epidemiological superspreader potential in a metapopulation network |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7971523/ https://www.ncbi.nlm.nih.gov/pubmed/33735223 http://dx.doi.org/10.1371/journal.pcbi.1008674 |
work_keys_str_mv | AT lieberthalbrandon connectivityreproductionnumberandmobilityinteracttodeterminecommunitiesepidemiologicalsuperspreaderpotentialinametapopulationnetwork AT gardnerallisonm connectivityreproductionnumberandmobilityinteracttodeterminecommunitiesepidemiologicalsuperspreaderpotentialinametapopulationnetwork |