Cargando…

Proteomic identification of the UDP-GlcNAc: PI α1–6 GlcNAc-transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei

The first step of glycosylphosphatidylinositol (GPI) anchor biosynthesis in all eukaryotes is the addition of N-acetylglucosamine (GlcNAc) to phosphatidylinositol (PI) which is catalysed by a UDP-GlcNAc: PI α1–6 GlcNAc-transferase, also known as GPI GnT. This enzyme has been shown to be a complex of...

Descripción completa

Detalles Bibliográficos
Autores principales: Ji, Zhe, Tinti, Michele, Ferguson, Michael A. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7971885/
https://www.ncbi.nlm.nih.gov/pubmed/33735232
http://dx.doi.org/10.1371/journal.pone.0244699
_version_ 1783666662660112384
author Ji, Zhe
Tinti, Michele
Ferguson, Michael A. J.
author_facet Ji, Zhe
Tinti, Michele
Ferguson, Michael A. J.
author_sort Ji, Zhe
collection PubMed
description The first step of glycosylphosphatidylinositol (GPI) anchor biosynthesis in all eukaryotes is the addition of N-acetylglucosamine (GlcNAc) to phosphatidylinositol (PI) which is catalysed by a UDP-GlcNAc: PI α1–6 GlcNAc-transferase, also known as GPI GnT. This enzyme has been shown to be a complex of seven subunits in mammalian cells and a similar complex of six homologous subunits has been postulated in yeast. Homologs of these mammalian and yeast subunits were identified in the Trypanosoma brucei predicted protein database. The putative catalytic subunit of the T. brucei complex, TbGPI3, was epitope tagged with three consecutive c-Myc sequences at its C-terminus. Immunoprecipitation of TbGPI3-3Myc followed by native polyacrylamide gel electrophoresis and anti-Myc Western blot showed that it is present in a ~240 kDa complex. Label-free quantitative proteomics were performed to compare anti-Myc pull-downs from lysates of TbGPI-3Myc expressing and wild type cell lines. TbGPI3-3Myc was the most highly enriched protein in the TbGPI3-3Myc lysate pull-down and the expected partner proteins TbGPI15, TbGPI19, TbGPI2, TbGPI1 and TbERI1 were also identified with significant enrichment. Our proteomics data also suggest that an Arv1-like protein (TbArv1) is a subunit of the T. brucei complex. Yeast and mammalian Arv1 have been previously implicated in GPI biosynthesis, but here we present the first experimental evidence for physical association of Arv1 with GPI biosynthetic machinery. A putative E2-ligase has also been tentatively identified as part of the T. brucei UDP-GlcNAc: PI α1–6 GlcNAc-transferase complex.
format Online
Article
Text
id pubmed-7971885
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-79718852021-03-31 Proteomic identification of the UDP-GlcNAc: PI α1–6 GlcNAc-transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei Ji, Zhe Tinti, Michele Ferguson, Michael A. J. PLoS One Research Article The first step of glycosylphosphatidylinositol (GPI) anchor biosynthesis in all eukaryotes is the addition of N-acetylglucosamine (GlcNAc) to phosphatidylinositol (PI) which is catalysed by a UDP-GlcNAc: PI α1–6 GlcNAc-transferase, also known as GPI GnT. This enzyme has been shown to be a complex of seven subunits in mammalian cells and a similar complex of six homologous subunits has been postulated in yeast. Homologs of these mammalian and yeast subunits were identified in the Trypanosoma brucei predicted protein database. The putative catalytic subunit of the T. brucei complex, TbGPI3, was epitope tagged with three consecutive c-Myc sequences at its C-terminus. Immunoprecipitation of TbGPI3-3Myc followed by native polyacrylamide gel electrophoresis and anti-Myc Western blot showed that it is present in a ~240 kDa complex. Label-free quantitative proteomics were performed to compare anti-Myc pull-downs from lysates of TbGPI-3Myc expressing and wild type cell lines. TbGPI3-3Myc was the most highly enriched protein in the TbGPI3-3Myc lysate pull-down and the expected partner proteins TbGPI15, TbGPI19, TbGPI2, TbGPI1 and TbERI1 were also identified with significant enrichment. Our proteomics data also suggest that an Arv1-like protein (TbArv1) is a subunit of the T. brucei complex. Yeast and mammalian Arv1 have been previously implicated in GPI biosynthesis, but here we present the first experimental evidence for physical association of Arv1 with GPI biosynthetic machinery. A putative E2-ligase has also been tentatively identified as part of the T. brucei UDP-GlcNAc: PI α1–6 GlcNAc-transferase complex. Public Library of Science 2021-03-18 /pmc/articles/PMC7971885/ /pubmed/33735232 http://dx.doi.org/10.1371/journal.pone.0244699 Text en © 2021 Ji et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Ji, Zhe
Tinti, Michele
Ferguson, Michael A. J.
Proteomic identification of the UDP-GlcNAc: PI α1–6 GlcNAc-transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei
title Proteomic identification of the UDP-GlcNAc: PI α1–6 GlcNAc-transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei
title_full Proteomic identification of the UDP-GlcNAc: PI α1–6 GlcNAc-transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei
title_fullStr Proteomic identification of the UDP-GlcNAc: PI α1–6 GlcNAc-transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei
title_full_unstemmed Proteomic identification of the UDP-GlcNAc: PI α1–6 GlcNAc-transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei
title_short Proteomic identification of the UDP-GlcNAc: PI α1–6 GlcNAc-transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of Trypanosoma brucei
title_sort proteomic identification of the udp-glcnac: pi α1–6 glcnac-transferase subunits of the glycosylphosphatidylinositol biosynthetic pathway of trypanosoma brucei
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7971885/
https://www.ncbi.nlm.nih.gov/pubmed/33735232
http://dx.doi.org/10.1371/journal.pone.0244699
work_keys_str_mv AT jizhe proteomicidentificationoftheudpglcnacpia16glcnactransferasesubunitsoftheglycosylphosphatidylinositolbiosyntheticpathwayoftrypanosomabrucei
AT tintimichele proteomicidentificationoftheudpglcnacpia16glcnactransferasesubunitsoftheglycosylphosphatidylinositolbiosyntheticpathwayoftrypanosomabrucei
AT fergusonmichaelaj proteomicidentificationoftheudpglcnacpia16glcnactransferasesubunitsoftheglycosylphosphatidylinositolbiosyntheticpathwayoftrypanosomabrucei