Cargando…
Predicting transcription factor binding sites using DNA shape features based on shared hybrid deep learning architecture
The study of transcriptional regulation is still difficult yet fundamental in molecular biology research. Recent research has shown that the double helix structure of nucleotides plays an important role in improving the accuracy and interpretability of transcription factor binding sites (TFBSs). Alt...
Autores principales: | Wang, Siguo, Zhang, Qinhu, Shen, Zhen, He, Ying, Chen, Zhen-Heng, Li, Jianqiang, Huang, De-Shuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7972936/ https://www.ncbi.nlm.nih.gov/pubmed/33767912 http://dx.doi.org/10.1016/j.omtn.2021.02.014 |
Ejemplares similares
-
Computational prediction and characterization of cell-type-specific and shared binding sites
por: Zhang, Qinhu, et al.
Publicado: (2022) -
Base-resolution prediction of transcription factor binding signals by a deep learning framework
por: Zhang, Qinhu, et al.
Publicado: (2022) -
Locating transcription factor binding sites by fully convolutional neural network
por: Zhang, Qinhu, et al.
Publicado: (2021) -
Modeling in-vivo protein-DNA binding by combining multiple-instance learning with a hybrid deep neural network
por: Zhang, Qinhu, et al.
Publicado: (2019) -
A survey on deep learning in DNA/RNA motif mining
por: He, Ying, et al.
Publicado: (2020)