Cargando…

Transcriptomic response of Saccharomyces cerevisiae to octanoic acid production

The medium-chain fatty acid octanoic acid is an important platform compound widely used in industry. The microbial production from sugars in Saccharomyces cerevisiae is a promising alternative to current non-sustainable production methods, however, titers need to be further increased. To achieve thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Baumann, Leonie, Doughty, Tyler, Siewers, Verena, Nielsen, Jens, Boles, Eckhard, Oreb, Mislav
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7972946/
https://www.ncbi.nlm.nih.gov/pubmed/33599754
http://dx.doi.org/10.1093/femsyr/foab011
Descripción
Sumario:The medium-chain fatty acid octanoic acid is an important platform compound widely used in industry. The microbial production from sugars in Saccharomyces cerevisiae is a promising alternative to current non-sustainable production methods, however, titers need to be further increased. To achieve this, it is essential to have in-depth knowledge about the cell physiology during octanoic acid production. To this end, we collected the first RNA-Seq data of an octanoic acid producer strain at three time points during fermentation. The strain produced higher levels of octanoic acid and increased levels of fatty acids of other chain lengths (C6–C18) but showed decreased growth compared to the reference. Furthermore, we show that the here analyzed transcriptomic response to internally produced octanoic acid is notably distinct from a wild type's response to externally supplied octanoic acid as reported in previous publications. By comparing the transcriptomic response of different sampling times, we identified several genes that we subsequently overexpressed and knocked out, respectively. Hereby we identified RPL40B, to date unknown to play a role in fatty acid biosynthesis or medium-chain fatty acid tolerance. Overexpression of RPL40B led to an increase in octanoic acid titers by 40%.