Cargando…
Photoacoustic microscopy with sparse data by convolutional neural networks
The point-by-point scanning mechanism of photoacoustic microscopy (PAM) results in low-speed imaging, limiting the application of PAM. In this work, we propose a method to improve the quality of sparse PAM images using convolutional neural networks (CNNs), thereby speeding up image acquisition while...
Autores principales: | Zhou, Jiasheng, He, Da, Shang, Xiaoyu, Guo, Zhendong, Chen, Sung-Liang, Luo, Jiajia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7973247/ https://www.ncbi.nlm.nih.gov/pubmed/33763327 http://dx.doi.org/10.1016/j.pacs.2021.100242 |
Ejemplares similares
-
High-fidelity deconvolution for acoustic-resolution photoacoustic microscopy enabled by convolutional neural networks
por: Feng, Fei, et al.
Publicado: (2022) -
Sparse Convolutional Neural Networks for Genome-Wide Prediction
por: Waldmann, Patrik, et al.
Publicado: (2020) -
Online Doctor Recommendation with Convolutional Neural Network and Sparse Inputs
por: Yan, Yongjie, et al.
Publicado: (2020) -
Hierarchical Sparse Coding of Objects in Deep Convolutional Neural Networks
por: Liu, Xingyu, et al.
Publicado: (2020) -
All-optical photoacoustic microscopy
por: Chen, Sung-Liang, et al.
Publicado: (2015)