Cargando…
Analysis and visualization of sleep stages based on deep neural networks
Automatic sleep stage scoring based on deep neural networks has come into focus of sleep researchers and physicians, as a reliable method able to objectively classify sleep stages would save human resources and simplify clinical routines. Due to novel open-source software libraries for machine learn...
Autores principales: | Krauss, Patrick, Metzner, Claus, Joshi, Nidhi, Schulze, Holger, Traxdorf, Maximilian, Maier, Andreas, Schilling, Achim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7973384/ https://www.ncbi.nlm.nih.gov/pubmed/33763623 http://dx.doi.org/10.1016/j.nbscr.2021.100064 |
Ejemplares similares
-
Sleep as a random walk: a super-statistical analysis of EEG data across sleep stages
por: Metzner, Claus, et al.
Publicado: (2021) -
Extracting continuous sleep depth from EEG data without machine learning
por: Metzner, Claus, et al.
Publicado: (2023) -
Analysis of Multichannel EEG Patterns During Human Sleep: A Novel Approach
por: Krauss, Patrick, et al.
Publicado: (2018) -
Classification at the accuracy limit: facing the problem of data ambiguity
por: Metzner, Claus, et al.
Publicado: (2022) -
A statistical method for analyzing and comparing spatiotemporal cortical activation patterns
por: Krauss, Patrick, et al.
Publicado: (2018)