Cargando…
A novel deletion in FLOWERING LOCUS T modulates flowering time in winter oilseed rape
KEY MESSAGE: A novel structural variant was discovered in the FLOWERING LOCUS T orthologue BnaFT.A02 by long-read sequencing. Nested association mapping in an elite winter oilseed rape population revealed that this 288 bp deletion associates with early flowering, putatively by modification of bindin...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7973412/ https://www.ncbi.nlm.nih.gov/pubmed/33471161 http://dx.doi.org/10.1007/s00122-021-03768-4 |
_version_ | 1783666839014866944 |
---|---|
author | Vollrath, Paul Chawla, Harmeet S. Schiessl, Sarah V. Gabur, Iulian Lee, HueyTyng Snowdon, Rod J. Obermeier, Christian |
author_facet | Vollrath, Paul Chawla, Harmeet S. Schiessl, Sarah V. Gabur, Iulian Lee, HueyTyng Snowdon, Rod J. Obermeier, Christian |
author_sort | Vollrath, Paul |
collection | PubMed |
description | KEY MESSAGE: A novel structural variant was discovered in the FLOWERING LOCUS T orthologue BnaFT.A02 by long-read sequencing. Nested association mapping in an elite winter oilseed rape population revealed that this 288 bp deletion associates with early flowering, putatively by modification of binding-sites for important flowering regulation genes. ABSTRACT: Perfect timing of flowering is crucial for optimal pollination and high seed yield. Extensive previous studies of flowering behavior in Brassica napus (canola, rapeseed) identified mutations in key flowering regulators which differentiate winter, semi-winter and spring ecotypes. However, because these are generally fixed in locally adapted genotypes, they have only limited relevance for fine adjustment of flowering time in elite cultivar gene pools. In crosses between ecotypes, the ecotype-specific major-effect mutations mask minor-effect loci of interest for breeding. Here, we investigated flowering time in a multiparental mapping population derived from seven elite winter oilseed rape cultivars which are fixed for major-effect mutations separating winter-type rapeseed from other ecotypes. Association mapping revealed eight genomic regions on chromosomes A02, C02 and C03 associating with fine modulation of flowering time. Long-read genomic resequencing of the seven parental lines identified seven structural variants coinciding with candidate genes for flowering time within chromosome regions associated with flowering time. Segregation patterns for these variants in the elite multiparental population and a diversity set of winter types using locus-specific assays revealed significant associations with flowering time for three deletions on chromosome A02. One of these was a previously undescribed 288 bp deletion within the second intron of FLOWERING LOCUS T on chromosome A02, emphasizing the advantage of long-read sequencing for detection of structural variants in this size range. Detailed analysis revealed the impact of this specific deletion on flowering-time modulation under extreme environments and varying day lengths in elite, winter-type oilseed rape. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s00122-021-03768-4). |
format | Online Article Text |
id | pubmed-7973412 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-79734122021-04-05 A novel deletion in FLOWERING LOCUS T modulates flowering time in winter oilseed rape Vollrath, Paul Chawla, Harmeet S. Schiessl, Sarah V. Gabur, Iulian Lee, HueyTyng Snowdon, Rod J. Obermeier, Christian Theor Appl Genet Original Article KEY MESSAGE: A novel structural variant was discovered in the FLOWERING LOCUS T orthologue BnaFT.A02 by long-read sequencing. Nested association mapping in an elite winter oilseed rape population revealed that this 288 bp deletion associates with early flowering, putatively by modification of binding-sites for important flowering regulation genes. ABSTRACT: Perfect timing of flowering is crucial for optimal pollination and high seed yield. Extensive previous studies of flowering behavior in Brassica napus (canola, rapeseed) identified mutations in key flowering regulators which differentiate winter, semi-winter and spring ecotypes. However, because these are generally fixed in locally adapted genotypes, they have only limited relevance for fine adjustment of flowering time in elite cultivar gene pools. In crosses between ecotypes, the ecotype-specific major-effect mutations mask minor-effect loci of interest for breeding. Here, we investigated flowering time in a multiparental mapping population derived from seven elite winter oilseed rape cultivars which are fixed for major-effect mutations separating winter-type rapeseed from other ecotypes. Association mapping revealed eight genomic regions on chromosomes A02, C02 and C03 associating with fine modulation of flowering time. Long-read genomic resequencing of the seven parental lines identified seven structural variants coinciding with candidate genes for flowering time within chromosome regions associated with flowering time. Segregation patterns for these variants in the elite multiparental population and a diversity set of winter types using locus-specific assays revealed significant associations with flowering time for three deletions on chromosome A02. One of these was a previously undescribed 288 bp deletion within the second intron of FLOWERING LOCUS T on chromosome A02, emphasizing the advantage of long-read sequencing for detection of structural variants in this size range. Detailed analysis revealed the impact of this specific deletion on flowering-time modulation under extreme environments and varying day lengths in elite, winter-type oilseed rape. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s00122-021-03768-4). Springer Berlin Heidelberg 2021-01-20 2021 /pmc/articles/PMC7973412/ /pubmed/33471161 http://dx.doi.org/10.1007/s00122-021-03768-4 Text en © The Author(s) 2021 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Original Article Vollrath, Paul Chawla, Harmeet S. Schiessl, Sarah V. Gabur, Iulian Lee, HueyTyng Snowdon, Rod J. Obermeier, Christian A novel deletion in FLOWERING LOCUS T modulates flowering time in winter oilseed rape |
title | A novel deletion in FLOWERING LOCUS T modulates flowering time in winter oilseed rape |
title_full | A novel deletion in FLOWERING LOCUS T modulates flowering time in winter oilseed rape |
title_fullStr | A novel deletion in FLOWERING LOCUS T modulates flowering time in winter oilseed rape |
title_full_unstemmed | A novel deletion in FLOWERING LOCUS T modulates flowering time in winter oilseed rape |
title_short | A novel deletion in FLOWERING LOCUS T modulates flowering time in winter oilseed rape |
title_sort | novel deletion in flowering locus t modulates flowering time in winter oilseed rape |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7973412/ https://www.ncbi.nlm.nih.gov/pubmed/33471161 http://dx.doi.org/10.1007/s00122-021-03768-4 |
work_keys_str_mv | AT vollrathpaul anoveldeletioninfloweringlocustmodulatesfloweringtimeinwinteroilseedrape AT chawlaharmeets anoveldeletioninfloweringlocustmodulatesfloweringtimeinwinteroilseedrape AT schiesslsarahv anoveldeletioninfloweringlocustmodulatesfloweringtimeinwinteroilseedrape AT gaburiulian anoveldeletioninfloweringlocustmodulatesfloweringtimeinwinteroilseedrape AT leehueytyng anoveldeletioninfloweringlocustmodulatesfloweringtimeinwinteroilseedrape AT snowdonrodj anoveldeletioninfloweringlocustmodulatesfloweringtimeinwinteroilseedrape AT obermeierchristian anoveldeletioninfloweringlocustmodulatesfloweringtimeinwinteroilseedrape AT vollrathpaul noveldeletioninfloweringlocustmodulatesfloweringtimeinwinteroilseedrape AT chawlaharmeets noveldeletioninfloweringlocustmodulatesfloweringtimeinwinteroilseedrape AT schiesslsarahv noveldeletioninfloweringlocustmodulatesfloweringtimeinwinteroilseedrape AT gaburiulian noveldeletioninfloweringlocustmodulatesfloweringtimeinwinteroilseedrape AT leehueytyng noveldeletioninfloweringlocustmodulatesfloweringtimeinwinteroilseedrape AT snowdonrodj noveldeletioninfloweringlocustmodulatesfloweringtimeinwinteroilseedrape AT obermeierchristian noveldeletioninfloweringlocustmodulatesfloweringtimeinwinteroilseedrape |