Cargando…

Real time observation of the interaction between aluminium salts and sweat under microfluidic conditions

Aluminium salts such as aluminium chlorohydrate (ACH) are the active ingredients of antiperspirant products. Their mechanism of action involves a temporary and superficial plugging of eccrine sweat pores at the skin surface. We developed a microfluidic system that allows the real time observation of...

Descripción completa

Detalles Bibliográficos
Autores principales: Sakhawoth, Yasine, Dupire, Jules, Leonforte, Fabien, Chardon, Marion, Monti, Fabrice, Tabeling, Patrick, Cabane, Bernard, Botet, Robert, Galey, Jean-Baptiste
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7973555/
https://www.ncbi.nlm.nih.gov/pubmed/33737654
http://dx.doi.org/10.1038/s41598-021-85691-8
Descripción
Sumario:Aluminium salts such as aluminium chlorohydrate (ACH) are the active ingredients of antiperspirant products. Their mechanism of action involves a temporary and superficial plugging of eccrine sweat pores at the skin surface. We developed a microfluidic system that allows the real time observation of the interactions between sweat and ACH in conditions mimicking physiological sweat flow and pore dimensions. Using artificial sweat containing bovine serum albumin as a model protein, we performed experiments under flowing conditions to demonstrate that pore clogging results from the aggregation of proteins by aluminium polycations at specific location in the sweat pore. Combining microfluidic experiments, confocal microscopy and numerical models helps to better understand the physical chemistry and mechanisms involved in pore plugging. The results show that plugging starts from the walls of sweat pores before expanding into the centre of the channel. The simulations aid in explaining the influence of ACH concentration as well as the impact of flow conditions on the localization of the plug. Altogether, these results outline the potential of both microfluidic confocal observations and numerical simulations at the single sweat pore level to understand why aluminium polycations are so efficient for sweat channel plugging.