Cargando…
Bioanalytical screening of low levels of dioxins and dioxin-like PCBs in pig meat (pork) for checking compliance with EU maximum and action levels using highly sensitive “third generation” recombinant H4L7.5c2 rat hepatoma cells
BACKGROUND: Low maximum and action levels set by the European Union for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in pig meat (pork) have led to a demand for reliable and cost-effective bioanalytical screening methods implemente...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7973644/ https://www.ncbi.nlm.nih.gov/pubmed/33828936 http://dx.doi.org/10.1186/s12302-021-00474-2 |
Sumario: | BACKGROUND: Low maximum and action levels set by the European Union for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in pig meat (pork) have led to a demand for reliable and cost-effective bioanalytical screening methods implemented upstream of gas chromatography/high-resolution mass spectrometry confirmatory technology, that can detect low levels of contamination in EU-regulated foods with quick turn-around times. RESULTS: Based on the Chemically Activated LUciferase gene eXpression (CALUX) bioassay, extraction and clean-up steps were optimized for recovery and reproducibility within working ranges significantly lower than in current bioassays. A highly sensitive “3rd generation” recombinant rat hepatoma cell line (H4L7.5c2) containing 20 dioxin responsive elements was exposed to pork sample extracts, and their PCDD/Fs and DL-PCBs levels were evaluated by measuring luciferase activity. The method was validated according to the provisions of Commission Regulation (EU) 2017/644 of 5 April 2017 with spiking experiments performed selectively for PCDD/Fs and DL-PCBs and individual calibration for PCDD/Fs, DL-PCBs and the calculated sum of PCDD/Fs and DL-PCBs. The resulting performance parameters met all legal specifications as confirmed by re-calibration using authentic samples. Cut-off concentrations for assessing compliance with low maximum levels and action levels set for PCDD/Fs and DL-PCBs within a range of 0.50–1.25 pg WHO-TEQ/g fat were derived, ensuring low rates of false-compliant results (ß-error < 1%) and keeping the rate of false-noncompliant results well under control (α-error < 12%). CONCLUSIONS: We present a fast and efficient bioanalytical routine method validated according to the European Union’s legal requirements on the basis of authentic samples, allowing the analyst to reliably identify pork samples and any other EU-regulated foods of animal origin suspected to be noncompliant with a high level of performance and turn-around times of 52 h. This was facilitated in particular by a quick and efficient extraction step followed by selective clean-up, use of a highly sensitive “3rd generation” H4L7.5c2 recombinant rat hepatoma cell CALUX bioassay, and optimized assay performance with improved calibrator precision and reduced lack-of-fit errors. New restrictions are proposed for the calibrator bias and the unspecific background contribution to reportable results. The procedure can utilize comparably small sample amounts and allows an annual throughput of 840–1000 samples per lab technician. The described bioanalytical method contributes to the European Commission's objective of generating accurate and reproducible analytical results according to Commission Regulation (EU) 2017/644 across the European Union. |
---|