Cargando…
Integrated multi-omics analysis of ovarian cancer using variational autoencoders
Cancer is a complex disease that deregulates cellular functions at various molecular levels (e.g., DNA, RNA, and proteins). Integrated multi-omics analysis of data from these levels is necessary to understand the aberrant cellular functions accountable for cancer and its development. In recent years...
Autores principales: | Hira, Muta Tah, Razzaque, M. A., Angione, Claudio, Scrivens, James, Sawan, Saladin, Sarker, Mosharraf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7973750/ https://www.ncbi.nlm.nih.gov/pubmed/33737557 http://dx.doi.org/10.1038/s41598-021-85285-4 |
Ejemplares similares
-
Author Correction: Integrated multi‑omics analysis of ovarian cancer using variational autoencoders
por: Hira, Muta Tah, et al.
Publicado: (2021) -
Ten quick tips for avoiding pitfalls in multi-omics data integration analyses
por: Chicco, Davide, et al.
Publicado: (2023) -
QoS-Aware Error Recovery in Wireless Body Sensor Networks Using Adaptive Network Coding
por: Razzaque, Mohammad Abdur, et al.
Publicado: (2014) -
Multiplex methods provide effective integration of multi-omic data in genome-scale models
por: Angione, Claudio, et al.
Publicado: (2016) -
Predictive analytics of environmental adaptability in multi-omic network models
por: Angione, Claudio, et al.
Publicado: (2015)