Cargando…
Regulatory role of the TLR4/JNK signaling pathway in sepsis-induced myocardial dysfunction
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, and is a leading cause of mortality worldwide. Myocardial dysfunction is associated with poor prognosis in patients with sepsis and contributes to a high risk of mortality. However, the pathophysiolog...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7974310/ https://www.ncbi.nlm.nih.gov/pubmed/33760172 http://dx.doi.org/10.3892/mmr.2021.11973 |
_version_ | 1783666914316255232 |
---|---|
author | Chang, Chao Hu, Liya Sun, Shanshan Song, Yanqiu Liu, Shan Wang, Jing Li, Peijun |
author_facet | Chang, Chao Hu, Liya Sun, Shanshan Song, Yanqiu Liu, Shan Wang, Jing Li, Peijun |
author_sort | Chang, Chao |
collection | PubMed |
description | Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, and is a leading cause of mortality worldwide. Myocardial dysfunction is associated with poor prognosis in patients with sepsis and contributes to a high risk of mortality. However, the pathophysiological mechanisms underlying sepsis-induced myocardial dysfunction are not completely understood. The aim of the present study was to investigate the role of toll-like receptor 4 (TLR4)/c-Jun N-terminal kinase (JNK) signaling in pro-inflammatory cytokine expression and cardiac dysfunction during lipopolysaccharide (LPS)-induced sepsis in mice. C57BL/6 mice were pretreated with TAK-242 or saline for 1 h and then subjected to LPS (12 mg/kg, intraperitoneal) treatment. Cardiac function was assessed using an echocardiogram. The morphological changes of the myocardium were examined by hematoxylin and eosin staining and transmission electron microscopy. The serum protein levels of cardiac troponin I (cTnI) and tumor necrosis factor-α (TNF-α) were determined by an enzyme-linked immunosorbent assay (ELISA). The TLR4 and JNK mRNA levels were analyzed via reverse transcription-quantitative PCR. TLR4, JNK and phosphorylated-JNK protein levels were measured by western blotting. In response to LPS, the activation of TLR4 and JNK in the myocardium was upregulated. There were significant increases in the serum levels of TNF-α and cTnI, as well as histopathological changes in the myocardium and suppressed cardiac function, following LPS stimulation. Inhibition of TLR4 activation using TAK-242 led to a decrease in the activation of JNK and reduced the protein expression of TNF-α in plasma, and alleviated histological myocardial injury and improved cardiac function during sepsis in mice. The present data suggested that the TLR4/JNK signaling pathway played a critical role in regulating the production of pro-inflammatory cytokines and myocardial dysfunction induced by LPS. |
format | Online Article Text |
id | pubmed-7974310 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-79743102021-03-24 Regulatory role of the TLR4/JNK signaling pathway in sepsis-induced myocardial dysfunction Chang, Chao Hu, Liya Sun, Shanshan Song, Yanqiu Liu, Shan Wang, Jing Li, Peijun Mol Med Rep Articles Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, and is a leading cause of mortality worldwide. Myocardial dysfunction is associated with poor prognosis in patients with sepsis and contributes to a high risk of mortality. However, the pathophysiological mechanisms underlying sepsis-induced myocardial dysfunction are not completely understood. The aim of the present study was to investigate the role of toll-like receptor 4 (TLR4)/c-Jun N-terminal kinase (JNK) signaling in pro-inflammatory cytokine expression and cardiac dysfunction during lipopolysaccharide (LPS)-induced sepsis in mice. C57BL/6 mice were pretreated with TAK-242 or saline for 1 h and then subjected to LPS (12 mg/kg, intraperitoneal) treatment. Cardiac function was assessed using an echocardiogram. The morphological changes of the myocardium were examined by hematoxylin and eosin staining and transmission electron microscopy. The serum protein levels of cardiac troponin I (cTnI) and tumor necrosis factor-α (TNF-α) were determined by an enzyme-linked immunosorbent assay (ELISA). The TLR4 and JNK mRNA levels were analyzed via reverse transcription-quantitative PCR. TLR4, JNK and phosphorylated-JNK protein levels were measured by western blotting. In response to LPS, the activation of TLR4 and JNK in the myocardium was upregulated. There were significant increases in the serum levels of TNF-α and cTnI, as well as histopathological changes in the myocardium and suppressed cardiac function, following LPS stimulation. Inhibition of TLR4 activation using TAK-242 led to a decrease in the activation of JNK and reduced the protein expression of TNF-α in plasma, and alleviated histological myocardial injury and improved cardiac function during sepsis in mice. The present data suggested that the TLR4/JNK signaling pathway played a critical role in regulating the production of pro-inflammatory cytokines and myocardial dysfunction induced by LPS. D.A. Spandidos 2021-05 2021-03-08 /pmc/articles/PMC7974310/ /pubmed/33760172 http://dx.doi.org/10.3892/mmr.2021.11973 Text en Copyright: © Chang et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Chang, Chao Hu, Liya Sun, Shanshan Song, Yanqiu Liu, Shan Wang, Jing Li, Peijun Regulatory role of the TLR4/JNK signaling pathway in sepsis-induced myocardial dysfunction |
title | Regulatory role of the TLR4/JNK signaling pathway in sepsis-induced myocardial dysfunction |
title_full | Regulatory role of the TLR4/JNK signaling pathway in sepsis-induced myocardial dysfunction |
title_fullStr | Regulatory role of the TLR4/JNK signaling pathway in sepsis-induced myocardial dysfunction |
title_full_unstemmed | Regulatory role of the TLR4/JNK signaling pathway in sepsis-induced myocardial dysfunction |
title_short | Regulatory role of the TLR4/JNK signaling pathway in sepsis-induced myocardial dysfunction |
title_sort | regulatory role of the tlr4/jnk signaling pathway in sepsis-induced myocardial dysfunction |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7974310/ https://www.ncbi.nlm.nih.gov/pubmed/33760172 http://dx.doi.org/10.3892/mmr.2021.11973 |
work_keys_str_mv | AT changchao regulatoryroleofthetlr4jnksignalingpathwayinsepsisinducedmyocardialdysfunction AT huliya regulatoryroleofthetlr4jnksignalingpathwayinsepsisinducedmyocardialdysfunction AT sunshanshan regulatoryroleofthetlr4jnksignalingpathwayinsepsisinducedmyocardialdysfunction AT songyanqiu regulatoryroleofthetlr4jnksignalingpathwayinsepsisinducedmyocardialdysfunction AT liushan regulatoryroleofthetlr4jnksignalingpathwayinsepsisinducedmyocardialdysfunction AT wangjing regulatoryroleofthetlr4jnksignalingpathwayinsepsisinducedmyocardialdysfunction AT lipeijun regulatoryroleofthetlr4jnksignalingpathwayinsepsisinducedmyocardialdysfunction |