Cargando…

Effects of whole body vibration and backrest angle on perceived mental workload and performance

Mental Workload (MWL) and human performance are widely contributing concepts in human factors. The objective of the current study is to investigate the perceived MWL and human performance during whole-body vibration (WBV) exposure while seated at different backrest angles. Nineteen healthy male part...

Descripción completa

Detalles Bibliográficos
Autores principales: Jalilian, Hamed, Gorjizadeh, Omid, Najafi, Kamran, Falahati, Mohsen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Leibniz Research Centre for Working Environment and Human Factors 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7975586/
https://www.ncbi.nlm.nih.gov/pubmed/33746669
http://dx.doi.org/10.17179/excli2020-2699
Descripción
Sumario:Mental Workload (MWL) and human performance are widely contributing concepts in human factors. The objective of the current study is to investigate the perceived MWL and human performance during whole-body vibration (WBV) exposure while seated at different backrest angles. Nineteen healthy male participants completed both the NASA-TLX and rating scale mental effort (RSME) after performing two difficulty levels of computerized dual tasks. The participants' performance was measured in these conditions while seated with a backrest angle of 100 and 120 degrees and exposed to WBV (intensity: 0.5 m/s(2); frequency 3-20 Hz) for 5 minutes. No significant effect on performance or perceived MWL (p<0.05) was found when changes were made to the backrest angles. Exposure to WBV under two backrest angles increased mental demand (p=0.04), effort (p=0.03) and frustration (p=0.03) and negatively affected human performance (p<0.05). The present study showed that exposure to WBV could be an important variable for designing work environments that require a high level of performance and mental demand while seated. However, the findings exhibited no association between inclining backrest angle and human performance or perceived MWL.