Cargando…

Quantitative investigation of the urinary excretion of three specific monoester metabolites of the plasticizer diisononyl adipate (DINA)

Diisononyl adipate (DINA) is a plasticizer used in PVC products as an alternative for restricted phthalate plasticizers. With this study, we provide first data on human DINA metabolism and excretion. We postulated mono(hydroxy-isononyl) adipate (OH-MINA), mono(oxo-isononyl) adipate (oxo-MINA), and m...

Descripción completa

Detalles Bibliográficos
Autores principales: Gotthardt, Alexandra, Bury, Daniel, Kling, Hans-Willi, Otter, Rainer, Weiss, Tobias, Brüning, Thomas, Koch, Holger M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Leibniz Research Centre for Working Environment and Human Factors 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7975632/
https://www.ncbi.nlm.nih.gov/pubmed/33746670
http://dx.doi.org/10.17179/excli2021-3360
Descripción
Sumario:Diisononyl adipate (DINA) is a plasticizer used in PVC products as an alternative for restricted phthalate plasticizers. With this study, we provide first data on human DINA metabolism and excretion. We postulated mono(hydroxy-isononyl) adipate (OH-MINA), mono(oxo-isononyl) adipate (oxo-MINA), and mono(carboxy-isooctyl) adipate (cx-MIOA) as specific DINA metabolites based on the known human metabolism of structurally similar adipates and phthalates. Urinary excretion was quantitatively investigated after a single oral dose (113 to 145 µg/kg body weight) to three healthy volunteers using a newly developed online-SPE-LC-MS/MS method with isotope dilution and LOQs between 0.3 - 0.6 µg/L. OH-MINA turned out to be the major of the three metabolites with consistent urinary excretion fractions (F(UE)s) of 0.020-0.023 % among all volunteers. Oxo-MINA and cx-MIOA were excreted with lower shares (mean: 0.003 % and 0.009 %, respectively). For all three metabolites, urinary concentrations peaked quickly between 1.4 and 2.3 h post dose with maximum concentrations of 23.1 (OH-MINA), 2.87 (oxo-MINA) and 9.83 µg/L (cx-MIOA). Thus, F(UE)s and urinary concentrations were rather low for these specific metabolites, with the major share of the dose presumably being excreted as non-specific metabolites such as adipic acid. In a pilot population (n=35) of German adults without known DINA exposure, we could not detect any of the three metabolites, contrary to the dosage study, indicating to population exposures lower than 50 µg/kg body weight/day. The new HBM method in conjunction with the new F(UE)s can be used for objective DINA exposure and risk assessment especially in populations with potentially higher DINA exposures.