Cargando…
Rapid development of cloud-native intelligent data pipelines for scientific data streams using the HASTE Toolkit
BACKGROUND: Large streamed datasets, characteristic of life science applications, are often resource-intensive to process, transport and store. We propose a pipeline model, a design pattern for scientific pipelines, where an incoming stream of scientific data is organized into a tiered or ordered “d...
Autores principales: | Blamey, Ben, Toor, Salman, Dahlö, Martin, Wieslander, Håkan, Harrison, Philip J, Sintorn, Ida-Maria, Sabirsh, Alan, Wählby, Carolina, Spjuth, Ola, Hellander, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7976223/ https://www.ncbi.nlm.nih.gov/pubmed/33739401 http://dx.doi.org/10.1093/gigascience/giab018 |
Ejemplares similares
-
TEM image restoration from fast image streams
por: Wieslander, Håkan, et al.
Publicado: (2021) -
Evaluating the utility of brightfield image data for mechanism of action prediction
por: Harrison, Philip John, et al.
Publicado: (2023) -
MaRe: Processing Big Data with application containers on Apache Spark
por: Capuccini, Marco, et al.
Publicado: (2020) -
SciPipe: A workflow library for agile development of complex and dynamic bioinformatics pipelines
por: Lampa, Samuel, et al.
Publicado: (2019) -
Deep Learning in Image Cytometry: A Review
por: Gupta, Anindya, et al.
Publicado: (2018)