Cargando…

Amphibian reproductive technologies: approaches and welfare considerations

Captive breeding and reintroduction programs have been established for several threatened amphibian species globally, but with varied success. This reflects our relatively poor understanding of the hormonal control of amphibian reproduction and the stimuli required to initiate and complete reproduct...

Descripción completa

Detalles Bibliográficos
Autores principales: Silla, Aimee J, Calatayud, Natalie E, Trudeau, Vance L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7976225/
https://www.ncbi.nlm.nih.gov/pubmed/33763231
http://dx.doi.org/10.1093/conphys/coab011
Descripción
Sumario:Captive breeding and reintroduction programs have been established for several threatened amphibian species globally, but with varied success. This reflects our relatively poor understanding of the hormonal control of amphibian reproduction and the stimuli required to initiate and complete reproductive events. While the amphibian hypothalamo–pituitary–gonadal (HPG) axis shares fundamental similarities with both teleosts and tetrapods, there are more species differences than previously assumed. As a result, many amphibian captive breeding programs fail to reliably initiate breeding behaviour, achieve high rates of fertilization or generate large numbers of healthy, genetically diverse offspring. Reproductive technologies have the potential to overcome these challenges but should be used in concert with traditional methods that manipulate environmental conditions (including temperature, nutrition and social environment). Species-dependent methods for handling, restraint and hormone administration (including route and frequency) are discussed to ensure optimal welfare of captive breeding stock. We summarize advances in hormone therapies and discuss two case studies that illustrate some of the challenges and successes with amphibian reproductive technologies: the mountain yellow-legged frog (Rana muscosa; USA) and the northern corroboree frog (Pseudophryne pengilleyi; Australia). Further research is required to develop hormone therapies for a greater number of species to boost global conservation efforts.