Cargando…
Machining learning predicts the need for escalated care and mortality in COVID-19 patients from clinical variables
Objective: This study aimed to develop a machine learning algorithm to identify key clinical measures to triage patients more effectively to general admission versus intensive care unit (ICU) admission and to predict mortality in COVID-19 pandemic. Materials and methods: This retrospective study con...
Autores principales: | Hou, Wei, Zhao, Zirun, Chen, Anne, Li, Haifang, Duong, Tim Q. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7976594/ https://www.ncbi.nlm.nih.gov/pubmed/33746590 http://dx.doi.org/10.7150/ijms.51235 |
Ejemplares similares
-
Time-to-Death Longitudinal Characterization of Clinical Variables and Longitudinal Prediction of Mortality in COVID-19 Patients: A Two-Center Study
por: Chen, Anne, et al.
Publicado: (2021) -
Deep‐learning artificial intelligence analysis of clinical variables predicts mortality in COVID‐19 patients
por: Zhu, Jocelyn S, et al.
Publicado: (2020) -
Prediction model and risk scores of ICU admission and mortality in COVID-19
por: Zhao, Zirun, et al.
Publicado: (2020) -
Machine-learning classification of texture features of portable chest X-ray accurately classifies COVID-19 lung infection
por: Hussain, Lal, et al.
Publicado: (2020) -
Neural network analysis of clinical variables predicts escalated care in COVID-19 patients: a retrospective study
por: Lu, Joyce Q., et al.
Publicado: (2021)