Cargando…
Structure and Mechanism of Pseudomonas aeruginosa PA0254/HudA, a prFMN-Dependent Pyrrole-2-carboxylic Acid Decarboxylase Linked to Virulence
[Image: see text] The UbiD family of reversible (de)carboxylases depends on the recently discovered prenylated-FMN (prFMN) cofactor for activity. The model enzyme ferulic acid decarboxylase (Fdc1) decarboxylates unsaturated aliphatic acids via a reversible 1,3-cycloaddition process. Protein engineer...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7976604/ https://www.ncbi.nlm.nih.gov/pubmed/33763291 http://dx.doi.org/10.1021/acscatal.0c05042 |
_version_ | 1783667034930806784 |
---|---|
author | Payne, Karl A. P. Marshall, Stephen A. Fisher, Karl Rigby, Stephen E. J. Cliff, Matthew J. Spiess, Reynard Cannas, Diego M. Larrosa, Igor Hay, Sam Leys, David |
author_facet | Payne, Karl A. P. Marshall, Stephen A. Fisher, Karl Rigby, Stephen E. J. Cliff, Matthew J. Spiess, Reynard Cannas, Diego M. Larrosa, Igor Hay, Sam Leys, David |
author_sort | Payne, Karl A. P. |
collection | PubMed |
description | [Image: see text] The UbiD family of reversible (de)carboxylases depends on the recently discovered prenylated-FMN (prFMN) cofactor for activity. The model enzyme ferulic acid decarboxylase (Fdc1) decarboxylates unsaturated aliphatic acids via a reversible 1,3-cycloaddition process. Protein engineering has extended the Fdc1 substrate range to include (hetero)aromatic acids, although catalytic rates remain poor. This raises the question how efficient decarboxylation of (hetero)aromatic acids is achieved by other UbiD family members. Here, we show that the Pseudomonas aeruginosa virulence attenuation factor PA0254/HudA is a pyrrole-2-carboxylic acid decarboxylase. The crystal structure of the enzyme in the presence of the reversible inhibitor imidazole reveals a covalent prFMN–imidazole adduct is formed. Substrate screening reveals HudA and selected active site variants can accept a modest range of heteroaromatic compounds, including thiophene-2-carboxylic acid. Together with computational studies, our data suggests prFMN covalent catalysis occurs via electrophilic aromatic substitution and links HudA activity with the inhibitory effects of pyrrole-2-carboxylic acid on P. aeruginosa quorum sensing. |
format | Online Article Text |
id | pubmed-7976604 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-79766042021-03-22 Structure and Mechanism of Pseudomonas aeruginosa PA0254/HudA, a prFMN-Dependent Pyrrole-2-carboxylic Acid Decarboxylase Linked to Virulence Payne, Karl A. P. Marshall, Stephen A. Fisher, Karl Rigby, Stephen E. J. Cliff, Matthew J. Spiess, Reynard Cannas, Diego M. Larrosa, Igor Hay, Sam Leys, David ACS Catal [Image: see text] The UbiD family of reversible (de)carboxylases depends on the recently discovered prenylated-FMN (prFMN) cofactor for activity. The model enzyme ferulic acid decarboxylase (Fdc1) decarboxylates unsaturated aliphatic acids via a reversible 1,3-cycloaddition process. Protein engineering has extended the Fdc1 substrate range to include (hetero)aromatic acids, although catalytic rates remain poor. This raises the question how efficient decarboxylation of (hetero)aromatic acids is achieved by other UbiD family members. Here, we show that the Pseudomonas aeruginosa virulence attenuation factor PA0254/HudA is a pyrrole-2-carboxylic acid decarboxylase. The crystal structure of the enzyme in the presence of the reversible inhibitor imidazole reveals a covalent prFMN–imidazole adduct is formed. Substrate screening reveals HudA and selected active site variants can accept a modest range of heteroaromatic compounds, including thiophene-2-carboxylic acid. Together with computational studies, our data suggests prFMN covalent catalysis occurs via electrophilic aromatic substitution and links HudA activity with the inhibitory effects of pyrrole-2-carboxylic acid on P. aeruginosa quorum sensing. American Chemical Society 2021-02-17 2021-03-05 /pmc/articles/PMC7976604/ /pubmed/33763291 http://dx.doi.org/10.1021/acscatal.0c05042 Text en © 2021 The Authors. Published by American Chemical Society This is an open access article published under an ACS AuthorChoice License (https://creativecommons.org/licenses/by/4.0/) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Payne, Karl A. P. Marshall, Stephen A. Fisher, Karl Rigby, Stephen E. J. Cliff, Matthew J. Spiess, Reynard Cannas, Diego M. Larrosa, Igor Hay, Sam Leys, David Structure and Mechanism of Pseudomonas aeruginosa PA0254/HudA, a prFMN-Dependent Pyrrole-2-carboxylic Acid Decarboxylase Linked to Virulence |
title | Structure and Mechanism of Pseudomonas aeruginosa PA0254/HudA, a prFMN-Dependent Pyrrole-2-carboxylic Acid Decarboxylase
Linked to Virulence |
title_full | Structure and Mechanism of Pseudomonas aeruginosa PA0254/HudA, a prFMN-Dependent Pyrrole-2-carboxylic Acid Decarboxylase
Linked to Virulence |
title_fullStr | Structure and Mechanism of Pseudomonas aeruginosa PA0254/HudA, a prFMN-Dependent Pyrrole-2-carboxylic Acid Decarboxylase
Linked to Virulence |
title_full_unstemmed | Structure and Mechanism of Pseudomonas aeruginosa PA0254/HudA, a prFMN-Dependent Pyrrole-2-carboxylic Acid Decarboxylase
Linked to Virulence |
title_short | Structure and Mechanism of Pseudomonas aeruginosa PA0254/HudA, a prFMN-Dependent Pyrrole-2-carboxylic Acid Decarboxylase
Linked to Virulence |
title_sort | structure and mechanism of pseudomonas aeruginosa pa0254/huda, a prfmn-dependent pyrrole-2-carboxylic acid decarboxylase
linked to virulence |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7976604/ https://www.ncbi.nlm.nih.gov/pubmed/33763291 http://dx.doi.org/10.1021/acscatal.0c05042 |
work_keys_str_mv | AT paynekarlap structureandmechanismofpseudomonasaeruginosapa0254hudaaprfmndependentpyrrole2carboxylicaciddecarboxylaselinkedtovirulence AT marshallstephena structureandmechanismofpseudomonasaeruginosapa0254hudaaprfmndependentpyrrole2carboxylicaciddecarboxylaselinkedtovirulence AT fisherkarl structureandmechanismofpseudomonasaeruginosapa0254hudaaprfmndependentpyrrole2carboxylicaciddecarboxylaselinkedtovirulence AT rigbystephenej structureandmechanismofpseudomonasaeruginosapa0254hudaaprfmndependentpyrrole2carboxylicaciddecarboxylaselinkedtovirulence AT cliffmatthewj structureandmechanismofpseudomonasaeruginosapa0254hudaaprfmndependentpyrrole2carboxylicaciddecarboxylaselinkedtovirulence AT spiessreynard structureandmechanismofpseudomonasaeruginosapa0254hudaaprfmndependentpyrrole2carboxylicaciddecarboxylaselinkedtovirulence AT cannasdiegom structureandmechanismofpseudomonasaeruginosapa0254hudaaprfmndependentpyrrole2carboxylicaciddecarboxylaselinkedtovirulence AT larrosaigor structureandmechanismofpseudomonasaeruginosapa0254hudaaprfmndependentpyrrole2carboxylicaciddecarboxylaselinkedtovirulence AT haysam structureandmechanismofpseudomonasaeruginosapa0254hudaaprfmndependentpyrrole2carboxylicaciddecarboxylaselinkedtovirulence AT leysdavid structureandmechanismofpseudomonasaeruginosapa0254hudaaprfmndependentpyrrole2carboxylicaciddecarboxylaselinkedtovirulence |