Cargando…

Structure and Mechanism of Pseudomonas aeruginosa PA0254/HudA, a prFMN-Dependent Pyrrole-2-carboxylic Acid Decarboxylase Linked to Virulence

[Image: see text] The UbiD family of reversible (de)carboxylases depends on the recently discovered prenylated-FMN (prFMN) cofactor for activity. The model enzyme ferulic acid decarboxylase (Fdc1) decarboxylates unsaturated aliphatic acids via a reversible 1,3-cycloaddition process. Protein engineer...

Descripción completa

Detalles Bibliográficos
Autores principales: Payne, Karl A. P., Marshall, Stephen A., Fisher, Karl, Rigby, Stephen E. J., Cliff, Matthew J., Spiess, Reynard, Cannas, Diego M., Larrosa, Igor, Hay, Sam, Leys, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7976604/
https://www.ncbi.nlm.nih.gov/pubmed/33763291
http://dx.doi.org/10.1021/acscatal.0c05042
_version_ 1783667034930806784
author Payne, Karl A. P.
Marshall, Stephen A.
Fisher, Karl
Rigby, Stephen E. J.
Cliff, Matthew J.
Spiess, Reynard
Cannas, Diego M.
Larrosa, Igor
Hay, Sam
Leys, David
author_facet Payne, Karl A. P.
Marshall, Stephen A.
Fisher, Karl
Rigby, Stephen E. J.
Cliff, Matthew J.
Spiess, Reynard
Cannas, Diego M.
Larrosa, Igor
Hay, Sam
Leys, David
author_sort Payne, Karl A. P.
collection PubMed
description [Image: see text] The UbiD family of reversible (de)carboxylases depends on the recently discovered prenylated-FMN (prFMN) cofactor for activity. The model enzyme ferulic acid decarboxylase (Fdc1) decarboxylates unsaturated aliphatic acids via a reversible 1,3-cycloaddition process. Protein engineering has extended the Fdc1 substrate range to include (hetero)aromatic acids, although catalytic rates remain poor. This raises the question how efficient decarboxylation of (hetero)aromatic acids is achieved by other UbiD family members. Here, we show that the Pseudomonas aeruginosa virulence attenuation factor PA0254/HudA is a pyrrole-2-carboxylic acid decarboxylase. The crystal structure of the enzyme in the presence of the reversible inhibitor imidazole reveals a covalent prFMN–imidazole adduct is formed. Substrate screening reveals HudA and selected active site variants can accept a modest range of heteroaromatic compounds, including thiophene-2-carboxylic acid. Together with computational studies, our data suggests prFMN covalent catalysis occurs via electrophilic aromatic substitution and links HudA activity with the inhibitory effects of pyrrole-2-carboxylic acid on P. aeruginosa quorum sensing.
format Online
Article
Text
id pubmed-7976604
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-79766042021-03-22 Structure and Mechanism of Pseudomonas aeruginosa PA0254/HudA, a prFMN-Dependent Pyrrole-2-carboxylic Acid Decarboxylase Linked to Virulence Payne, Karl A. P. Marshall, Stephen A. Fisher, Karl Rigby, Stephen E. J. Cliff, Matthew J. Spiess, Reynard Cannas, Diego M. Larrosa, Igor Hay, Sam Leys, David ACS Catal [Image: see text] The UbiD family of reversible (de)carboxylases depends on the recently discovered prenylated-FMN (prFMN) cofactor for activity. The model enzyme ferulic acid decarboxylase (Fdc1) decarboxylates unsaturated aliphatic acids via a reversible 1,3-cycloaddition process. Protein engineering has extended the Fdc1 substrate range to include (hetero)aromatic acids, although catalytic rates remain poor. This raises the question how efficient decarboxylation of (hetero)aromatic acids is achieved by other UbiD family members. Here, we show that the Pseudomonas aeruginosa virulence attenuation factor PA0254/HudA is a pyrrole-2-carboxylic acid decarboxylase. The crystal structure of the enzyme in the presence of the reversible inhibitor imidazole reveals a covalent prFMN–imidazole adduct is formed. Substrate screening reveals HudA and selected active site variants can accept a modest range of heteroaromatic compounds, including thiophene-2-carboxylic acid. Together with computational studies, our data suggests prFMN covalent catalysis occurs via electrophilic aromatic substitution and links HudA activity with the inhibitory effects of pyrrole-2-carboxylic acid on P. aeruginosa quorum sensing. American Chemical Society 2021-02-17 2021-03-05 /pmc/articles/PMC7976604/ /pubmed/33763291 http://dx.doi.org/10.1021/acscatal.0c05042 Text en © 2021 The Authors. Published by American Chemical Society This is an open access article published under an ACS AuthorChoice License (https://creativecommons.org/licenses/by/4.0/) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Payne, Karl A. P.
Marshall, Stephen A.
Fisher, Karl
Rigby, Stephen E. J.
Cliff, Matthew J.
Spiess, Reynard
Cannas, Diego M.
Larrosa, Igor
Hay, Sam
Leys, David
Structure and Mechanism of Pseudomonas aeruginosa PA0254/HudA, a prFMN-Dependent Pyrrole-2-carboxylic Acid Decarboxylase Linked to Virulence
title Structure and Mechanism of Pseudomonas aeruginosa PA0254/HudA, a prFMN-Dependent Pyrrole-2-carboxylic Acid Decarboxylase Linked to Virulence
title_full Structure and Mechanism of Pseudomonas aeruginosa PA0254/HudA, a prFMN-Dependent Pyrrole-2-carboxylic Acid Decarboxylase Linked to Virulence
title_fullStr Structure and Mechanism of Pseudomonas aeruginosa PA0254/HudA, a prFMN-Dependent Pyrrole-2-carboxylic Acid Decarboxylase Linked to Virulence
title_full_unstemmed Structure and Mechanism of Pseudomonas aeruginosa PA0254/HudA, a prFMN-Dependent Pyrrole-2-carboxylic Acid Decarboxylase Linked to Virulence
title_short Structure and Mechanism of Pseudomonas aeruginosa PA0254/HudA, a prFMN-Dependent Pyrrole-2-carboxylic Acid Decarboxylase Linked to Virulence
title_sort structure and mechanism of pseudomonas aeruginosa pa0254/huda, a prfmn-dependent pyrrole-2-carboxylic acid decarboxylase linked to virulence
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7976604/
https://www.ncbi.nlm.nih.gov/pubmed/33763291
http://dx.doi.org/10.1021/acscatal.0c05042
work_keys_str_mv AT paynekarlap structureandmechanismofpseudomonasaeruginosapa0254hudaaprfmndependentpyrrole2carboxylicaciddecarboxylaselinkedtovirulence
AT marshallstephena structureandmechanismofpseudomonasaeruginosapa0254hudaaprfmndependentpyrrole2carboxylicaciddecarboxylaselinkedtovirulence
AT fisherkarl structureandmechanismofpseudomonasaeruginosapa0254hudaaprfmndependentpyrrole2carboxylicaciddecarboxylaselinkedtovirulence
AT rigbystephenej structureandmechanismofpseudomonasaeruginosapa0254hudaaprfmndependentpyrrole2carboxylicaciddecarboxylaselinkedtovirulence
AT cliffmatthewj structureandmechanismofpseudomonasaeruginosapa0254hudaaprfmndependentpyrrole2carboxylicaciddecarboxylaselinkedtovirulence
AT spiessreynard structureandmechanismofpseudomonasaeruginosapa0254hudaaprfmndependentpyrrole2carboxylicaciddecarboxylaselinkedtovirulence
AT cannasdiegom structureandmechanismofpseudomonasaeruginosapa0254hudaaprfmndependentpyrrole2carboxylicaciddecarboxylaselinkedtovirulence
AT larrosaigor structureandmechanismofpseudomonasaeruginosapa0254hudaaprfmndependentpyrrole2carboxylicaciddecarboxylaselinkedtovirulence
AT haysam structureandmechanismofpseudomonasaeruginosapa0254hudaaprfmndependentpyrrole2carboxylicaciddecarboxylaselinkedtovirulence
AT leysdavid structureandmechanismofpseudomonasaeruginosapa0254hudaaprfmndependentpyrrole2carboxylicaciddecarboxylaselinkedtovirulence