Cargando…

Variable Repetition Rate THz Source for Ultrafast Scanning Tunneling Microscopy

[Image: see text] Broadband THz pulses enable ultrafast electronic transport experiments on the nanoscale by coupling THz electric fields into the devices with antennas, asperities, or scanning probe tips. Here, we design a versatile THz source optimized for driving the highly resistive tunnel junct...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdo, Mohamad, Sheng, Shaoxiang, Rolf-Pissarczyk, Steffen, Arnhold, Lukas, Burgess, Jacob A. J., Isobe, Masahiko, Malavolti, Luigi, Loth, Sebastian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7976605/
https://www.ncbi.nlm.nih.gov/pubmed/33763504
http://dx.doi.org/10.1021/acsphotonics.0c01652
_version_ 1783667035160444928
author Abdo, Mohamad
Sheng, Shaoxiang
Rolf-Pissarczyk, Steffen
Arnhold, Lukas
Burgess, Jacob A. J.
Isobe, Masahiko
Malavolti, Luigi
Loth, Sebastian
author_facet Abdo, Mohamad
Sheng, Shaoxiang
Rolf-Pissarczyk, Steffen
Arnhold, Lukas
Burgess, Jacob A. J.
Isobe, Masahiko
Malavolti, Luigi
Loth, Sebastian
author_sort Abdo, Mohamad
collection PubMed
description [Image: see text] Broadband THz pulses enable ultrafast electronic transport experiments on the nanoscale by coupling THz electric fields into the devices with antennas, asperities, or scanning probe tips. Here, we design a versatile THz source optimized for driving the highly resistive tunnel junction of a scanning tunneling microscope. The source uses optical rectification in lithium niobate to generate arbitrary THz pulse trains with freely adjustable repetition rates between 0.5 and 41 MHz. These induce subpicosecond voltage transients in the tunnel junction with peak amplitudes between 0.1 and 12 V, achieving a conversion efficiency of 0.4 V/(kV/cm) from far-field THz peak electric field strength to peak junction voltage in the STM. Tunnel currents in the quantum limit of less than one electron per THz pulse are readily detected at multi-MHz repetition rates. The ability to tune between high pulse energy and high signal fidelity makes this THz source design effective for exploration of ultrafast and atomic-scale electron dynamics.
format Online
Article
Text
id pubmed-7976605
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-79766052021-03-22 Variable Repetition Rate THz Source for Ultrafast Scanning Tunneling Microscopy Abdo, Mohamad Sheng, Shaoxiang Rolf-Pissarczyk, Steffen Arnhold, Lukas Burgess, Jacob A. J. Isobe, Masahiko Malavolti, Luigi Loth, Sebastian ACS Photonics [Image: see text] Broadband THz pulses enable ultrafast electronic transport experiments on the nanoscale by coupling THz electric fields into the devices with antennas, asperities, or scanning probe tips. Here, we design a versatile THz source optimized for driving the highly resistive tunnel junction of a scanning tunneling microscope. The source uses optical rectification in lithium niobate to generate arbitrary THz pulse trains with freely adjustable repetition rates between 0.5 and 41 MHz. These induce subpicosecond voltage transients in the tunnel junction with peak amplitudes between 0.1 and 12 V, achieving a conversion efficiency of 0.4 V/(kV/cm) from far-field THz peak electric field strength to peak junction voltage in the STM. Tunnel currents in the quantum limit of less than one electron per THz pulse are readily detected at multi-MHz repetition rates. The ability to tune between high pulse energy and high signal fidelity makes this THz source design effective for exploration of ultrafast and atomic-scale electron dynamics. American Chemical Society 2021-03-08 2021-03-17 /pmc/articles/PMC7976605/ /pubmed/33763504 http://dx.doi.org/10.1021/acsphotonics.0c01652 Text en © 2021 The Authors. Published by American Chemical Society Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Abdo, Mohamad
Sheng, Shaoxiang
Rolf-Pissarczyk, Steffen
Arnhold, Lukas
Burgess, Jacob A. J.
Isobe, Masahiko
Malavolti, Luigi
Loth, Sebastian
Variable Repetition Rate THz Source for Ultrafast Scanning Tunneling Microscopy
title Variable Repetition Rate THz Source for Ultrafast Scanning Tunneling Microscopy
title_full Variable Repetition Rate THz Source for Ultrafast Scanning Tunneling Microscopy
title_fullStr Variable Repetition Rate THz Source for Ultrafast Scanning Tunneling Microscopy
title_full_unstemmed Variable Repetition Rate THz Source for Ultrafast Scanning Tunneling Microscopy
title_short Variable Repetition Rate THz Source for Ultrafast Scanning Tunneling Microscopy
title_sort variable repetition rate thz source for ultrafast scanning tunneling microscopy
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7976605/
https://www.ncbi.nlm.nih.gov/pubmed/33763504
http://dx.doi.org/10.1021/acsphotonics.0c01652
work_keys_str_mv AT abdomohamad variablerepetitionratethzsourceforultrafastscanningtunnelingmicroscopy
AT shengshaoxiang variablerepetitionratethzsourceforultrafastscanningtunnelingmicroscopy
AT rolfpissarczyksteffen variablerepetitionratethzsourceforultrafastscanningtunnelingmicroscopy
AT arnholdlukas variablerepetitionratethzsourceforultrafastscanningtunnelingmicroscopy
AT burgessjacobaj variablerepetitionratethzsourceforultrafastscanningtunnelingmicroscopy
AT isobemasahiko variablerepetitionratethzsourceforultrafastscanningtunnelingmicroscopy
AT malavoltiluigi variablerepetitionratethzsourceforultrafastscanningtunnelingmicroscopy
AT lothsebastian variablerepetitionratethzsourceforultrafastscanningtunnelingmicroscopy