Cargando…
Bayesian approach for predicting responses to therapy from high-dimensional time-course gene expression profiles
BACKGROUND: Historical and updated information provided by time-course data collected during an entire treatment period proves to be more useful than information provided by single-point data. Accurate predictions made using time-course data on multiple biomarkers that indicate a patient’s response...
Autores principales: | Fukushima, Arika, Sugimoto, Masahiro, Hiwa, Satoru, Hiroyasu, Tomoyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7977599/ https://www.ncbi.nlm.nih.gov/pubmed/33736614 http://dx.doi.org/10.1186/s12859-021-04052-4 |
Ejemplares similares
-
Elastic net-based prediction of IFN-β treatment response of patients with multiple sclerosis using time series microarray gene expression profiles
por: Fukushima, Arika, et al.
Publicado: (2019) -
Bayesian approach for analysis of time-to-event data in plant biology
por: Humplík, Jan F., et al.
Publicado: (2020) -
A Functional NIRS Study of Brain Functional Networks Induced by Social Time Coordination
por: Mizuno, Megumi, et al.
Publicado: (2019) -
Recursive regularization for inferring gene networks from time-course gene expression profiles
por: Shimamura, Teppei, et al.
Publicado: (2009) -
Automated Extraction of Human Functional Brain Network Properties Associated with Working Memory Load through a Machine Learning-Based Feature Selection Algorithm
por: Hiwa, Satoru, et al.
Publicado: (2018)