Cargando…
Machine learning‐based multimodal prediction of language outcomes in chronic aphasia
Recent studies have combined multiple neuroimaging modalities to gain further understanding of the neurobiological substrates of aphasia. Following this line of work, the current study uses machine learning approaches to predict aphasia severity and specific language measures based on a multimodal n...
Autores principales: | Kristinsson, Sigfus, Zhang, Wanfang, Rorden, Chris, Newman‐Norlund, Roger, Basilakos, Alexandra, Bonilha, Leonardo, Yourganov, Grigori, Xiao, Feifei, Hillis, Argye, Fridriksson, Julius |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7978124/ https://www.ncbi.nlm.nih.gov/pubmed/33377592 http://dx.doi.org/10.1002/hbm.25321 |
Ejemplares similares
-
Isolating the white matter circuitry of the dorsal language stream: Connectome‐Symptom Mapping in stroke induced aphasia
por: Baboyan, Vatche, et al.
Publicado: (2021) -
Comparing the brain–behaviour relationship in acute and chronic stroke aphasia
por: Busby, Natalie, et al.
Publicado: (2023) -
Brain age predicts long-term recovery in post-stroke aphasia
por: Kristinsson, Sigfus, et al.
Publicado: (2022) -
Individualized response to semantic versus phonological aphasia therapies in stroke
por: Kristinsson, Sigfus, et al.
Publicado: (2021) -
Predictors of Therapy Response in Chronic Aphasia: Building a Foundation for Personalized Aphasia Therapy
por: Kristinsson, Sigfus, et al.
Publicado: (2022)