Cargando…
Predicting sensory evaluation of spinach freshness using machine learning model and digital images
The visual perception of freshness is an important factor considered by consumers in the purchase of fruits and vegetables. However, panel testing when evaluating food products is time consuming and expensive. Herein, the ability of an image processing-based, nondestructive technique to classify spi...
Autores principales: | Koyama, Kento, Tanaka, Marin, Cho, Byeong-Hyo, Yoshikawa, Yusaku, Koseki, Shige |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7978266/ https://www.ncbi.nlm.nih.gov/pubmed/33739969 http://dx.doi.org/10.1371/journal.pone.0248769 |
Ejemplares similares
-
Prediction of population behavior of Listeria monocytogenes in food using machine learning and a microbial growth and survival database
por: Hiura, Satoko, et al.
Publicado: (2021) -
Describing Uncertainty in Salmonella Thermal Inactivation Using Bayesian Statistical Modeling
por: Koyama, Kento, et al.
Publicado: (2019) -
Bayesian Generalized Linear Model for Simulating Bacterial Inactivation/Growth Considering Variability and Uncertainty
por: Hiura, Satoko, et al.
Publicado: (2021) -
Identifying Freshness of Spinach Leaves Stored at Different Temperatures Using Hyperspectral Imaging
por: Zhu, Susu, et al.
Publicado: (2019) -
Ultrasonic treatment suppresses ethylene signaling and prolongs the freshness of spinach
por: Oda, Shoji, et al.
Publicado: (2021)