Cargando…
Symptom clusters in COVID-19: A potential clinical prediction tool from the COVID Symptom Study app
As no one symptom can predict disease severity or the need for dedicated medical support in coronavirus disease 2019 (COVID-19), we asked whether documenting symptom time series over the first few days informs outcome. Unsupervised time series clustering over symptom presentation was performed on da...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7978420/ https://www.ncbi.nlm.nih.gov/pubmed/33741586 http://dx.doi.org/10.1126/sciadv.abd4177 |
_version_ | 1783667205897977856 |
---|---|
author | Sudre, Carole H. Lee, Karla A. Lochlainn, Mary Ni Varsavsky, Thomas Murray, Benjamin Graham, Mark S. Menni, Cristina Modat, Marc Bowyer, Ruth C. E. Nguyen, Long H. Drew, David A. Joshi, Amit D. Ma, Wenjie Guo, Chuan-Guo Lo, Chun-Han Ganesh, Sajaysurya Buwe, Abubakar Pujol, Joan Capdevila du Cadet, Julien Lavigne Visconti, Alessia Freidin, Maxim B. El-Sayed Moustafa, Julia S. Falchi, Mario Davies, Richard Gomez, Maria F. Fall, Tove Cardoso, M. Jorge Wolf, Jonathan Franks, Paul W. Chan, Andrew T. Spector, Tim D. Steves, Claire J. Ourselin, Sébastien |
author_facet | Sudre, Carole H. Lee, Karla A. Lochlainn, Mary Ni Varsavsky, Thomas Murray, Benjamin Graham, Mark S. Menni, Cristina Modat, Marc Bowyer, Ruth C. E. Nguyen, Long H. Drew, David A. Joshi, Amit D. Ma, Wenjie Guo, Chuan-Guo Lo, Chun-Han Ganesh, Sajaysurya Buwe, Abubakar Pujol, Joan Capdevila du Cadet, Julien Lavigne Visconti, Alessia Freidin, Maxim B. El-Sayed Moustafa, Julia S. Falchi, Mario Davies, Richard Gomez, Maria F. Fall, Tove Cardoso, M. Jorge Wolf, Jonathan Franks, Paul W. Chan, Andrew T. Spector, Tim D. Steves, Claire J. Ourselin, Sébastien |
author_sort | Sudre, Carole H. |
collection | PubMed |
description | As no one symptom can predict disease severity or the need for dedicated medical support in coronavirus disease 2019 (COVID-19), we asked whether documenting symptom time series over the first few days informs outcome. Unsupervised time series clustering over symptom presentation was performed on data collected from a training dataset of completed cases enlisted early from the COVID Symptom Study Smartphone application, yielding six distinct symptom presentations. Clustering was validated on an independent replication dataset between 1 and 28 May 2020. Using the first 5 days of symptom logging, the ROC-AUC (receiver operating characteristic – area under the curve) of need for respiratory support was 78.8%, substantially outperforming personal characteristics alone (ROC-AUC 69.5%). Such an approach could be used to monitor at-risk patients and predict medical resource requirements days before they are required. |
format | Online Article Text |
id | pubmed-7978420 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-79784202021-03-31 Symptom clusters in COVID-19: A potential clinical prediction tool from the COVID Symptom Study app Sudre, Carole H. Lee, Karla A. Lochlainn, Mary Ni Varsavsky, Thomas Murray, Benjamin Graham, Mark S. Menni, Cristina Modat, Marc Bowyer, Ruth C. E. Nguyen, Long H. Drew, David A. Joshi, Amit D. Ma, Wenjie Guo, Chuan-Guo Lo, Chun-Han Ganesh, Sajaysurya Buwe, Abubakar Pujol, Joan Capdevila du Cadet, Julien Lavigne Visconti, Alessia Freidin, Maxim B. El-Sayed Moustafa, Julia S. Falchi, Mario Davies, Richard Gomez, Maria F. Fall, Tove Cardoso, M. Jorge Wolf, Jonathan Franks, Paul W. Chan, Andrew T. Spector, Tim D. Steves, Claire J. Ourselin, Sébastien Sci Adv Research Articles As no one symptom can predict disease severity or the need for dedicated medical support in coronavirus disease 2019 (COVID-19), we asked whether documenting symptom time series over the first few days informs outcome. Unsupervised time series clustering over symptom presentation was performed on data collected from a training dataset of completed cases enlisted early from the COVID Symptom Study Smartphone application, yielding six distinct symptom presentations. Clustering was validated on an independent replication dataset between 1 and 28 May 2020. Using the first 5 days of symptom logging, the ROC-AUC (receiver operating characteristic – area under the curve) of need for respiratory support was 78.8%, substantially outperforming personal characteristics alone (ROC-AUC 69.5%). Such an approach could be used to monitor at-risk patients and predict medical resource requirements days before they are required. American Association for the Advancement of Science 2021-03-19 /pmc/articles/PMC7978420/ /pubmed/33741586 http://dx.doi.org/10.1126/sciadv.abd4177 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Sudre, Carole H. Lee, Karla A. Lochlainn, Mary Ni Varsavsky, Thomas Murray, Benjamin Graham, Mark S. Menni, Cristina Modat, Marc Bowyer, Ruth C. E. Nguyen, Long H. Drew, David A. Joshi, Amit D. Ma, Wenjie Guo, Chuan-Guo Lo, Chun-Han Ganesh, Sajaysurya Buwe, Abubakar Pujol, Joan Capdevila du Cadet, Julien Lavigne Visconti, Alessia Freidin, Maxim B. El-Sayed Moustafa, Julia S. Falchi, Mario Davies, Richard Gomez, Maria F. Fall, Tove Cardoso, M. Jorge Wolf, Jonathan Franks, Paul W. Chan, Andrew T. Spector, Tim D. Steves, Claire J. Ourselin, Sébastien Symptom clusters in COVID-19: A potential clinical prediction tool from the COVID Symptom Study app |
title | Symptom clusters in COVID-19: A potential clinical prediction tool from the COVID Symptom Study app |
title_full | Symptom clusters in COVID-19: A potential clinical prediction tool from the COVID Symptom Study app |
title_fullStr | Symptom clusters in COVID-19: A potential clinical prediction tool from the COVID Symptom Study app |
title_full_unstemmed | Symptom clusters in COVID-19: A potential clinical prediction tool from the COVID Symptom Study app |
title_short | Symptom clusters in COVID-19: A potential clinical prediction tool from the COVID Symptom Study app |
title_sort | symptom clusters in covid-19: a potential clinical prediction tool from the covid symptom study app |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7978420/ https://www.ncbi.nlm.nih.gov/pubmed/33741586 http://dx.doi.org/10.1126/sciadv.abd4177 |
work_keys_str_mv | AT sudrecaroleh symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT leekarlaa symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT lochlainnmaryni symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT varsavskythomas symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT murraybenjamin symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT grahammarks symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT mennicristina symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT modatmarc symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT bowyerruthce symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT nguyenlongh symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT drewdavida symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT joshiamitd symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT mawenjie symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT guochuanguo symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT lochunhan symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT ganeshsajaysurya symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT buweabubakar symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT pujoljoancapdevila symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT ducadetjulienlavigne symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT viscontialessia symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT freidinmaximb symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT elsayedmoustafajulias symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT falchimario symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT daviesrichard symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT gomezmariaf symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT falltove symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT cardosomjorge symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT wolfjonathan symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT frankspaulw symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT chanandrewt symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT spectortimd symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT stevesclairej symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp AT ourselinsebastien symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp |