Cargando…

Symptom clusters in COVID-19: A potential clinical prediction tool from the COVID Symptom Study app

As no one symptom can predict disease severity or the need for dedicated medical support in coronavirus disease 2019 (COVID-19), we asked whether documenting symptom time series over the first few days informs outcome. Unsupervised time series clustering over symptom presentation was performed on da...

Descripción completa

Detalles Bibliográficos
Autores principales: Sudre, Carole H., Lee, Karla A., Lochlainn, Mary Ni, Varsavsky, Thomas, Murray, Benjamin, Graham, Mark S., Menni, Cristina, Modat, Marc, Bowyer, Ruth C. E., Nguyen, Long H., Drew, David A., Joshi, Amit D., Ma, Wenjie, Guo, Chuan-Guo, Lo, Chun-Han, Ganesh, Sajaysurya, Buwe, Abubakar, Pujol, Joan Capdevila, du Cadet, Julien Lavigne, Visconti, Alessia, Freidin, Maxim B., El-Sayed Moustafa, Julia S., Falchi, Mario, Davies, Richard, Gomez, Maria F., Fall, Tove, Cardoso, M. Jorge, Wolf, Jonathan, Franks, Paul W., Chan, Andrew T., Spector, Tim D., Steves, Claire J., Ourselin, Sébastien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7978420/
https://www.ncbi.nlm.nih.gov/pubmed/33741586
http://dx.doi.org/10.1126/sciadv.abd4177
_version_ 1783667205897977856
author Sudre, Carole H.
Lee, Karla A.
Lochlainn, Mary Ni
Varsavsky, Thomas
Murray, Benjamin
Graham, Mark S.
Menni, Cristina
Modat, Marc
Bowyer, Ruth C. E.
Nguyen, Long H.
Drew, David A.
Joshi, Amit D.
Ma, Wenjie
Guo, Chuan-Guo
Lo, Chun-Han
Ganesh, Sajaysurya
Buwe, Abubakar
Pujol, Joan Capdevila
du Cadet, Julien Lavigne
Visconti, Alessia
Freidin, Maxim B.
El-Sayed Moustafa, Julia S.
Falchi, Mario
Davies, Richard
Gomez, Maria F.
Fall, Tove
Cardoso, M. Jorge
Wolf, Jonathan
Franks, Paul W.
Chan, Andrew T.
Spector, Tim D.
Steves, Claire J.
Ourselin, Sébastien
author_facet Sudre, Carole H.
Lee, Karla A.
Lochlainn, Mary Ni
Varsavsky, Thomas
Murray, Benjamin
Graham, Mark S.
Menni, Cristina
Modat, Marc
Bowyer, Ruth C. E.
Nguyen, Long H.
Drew, David A.
Joshi, Amit D.
Ma, Wenjie
Guo, Chuan-Guo
Lo, Chun-Han
Ganesh, Sajaysurya
Buwe, Abubakar
Pujol, Joan Capdevila
du Cadet, Julien Lavigne
Visconti, Alessia
Freidin, Maxim B.
El-Sayed Moustafa, Julia S.
Falchi, Mario
Davies, Richard
Gomez, Maria F.
Fall, Tove
Cardoso, M. Jorge
Wolf, Jonathan
Franks, Paul W.
Chan, Andrew T.
Spector, Tim D.
Steves, Claire J.
Ourselin, Sébastien
author_sort Sudre, Carole H.
collection PubMed
description As no one symptom can predict disease severity or the need for dedicated medical support in coronavirus disease 2019 (COVID-19), we asked whether documenting symptom time series over the first few days informs outcome. Unsupervised time series clustering over symptom presentation was performed on data collected from a training dataset of completed cases enlisted early from the COVID Symptom Study Smartphone application, yielding six distinct symptom presentations. Clustering was validated on an independent replication dataset between 1 and 28 May 2020. Using the first 5 days of symptom logging, the ROC-AUC (receiver operating characteristic – area under the curve) of need for respiratory support was 78.8%, substantially outperforming personal characteristics alone (ROC-AUC 69.5%). Such an approach could be used to monitor at-risk patients and predict medical resource requirements days before they are required.
format Online
Article
Text
id pubmed-7978420
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-79784202021-03-31 Symptom clusters in COVID-19: A potential clinical prediction tool from the COVID Symptom Study app Sudre, Carole H. Lee, Karla A. Lochlainn, Mary Ni Varsavsky, Thomas Murray, Benjamin Graham, Mark S. Menni, Cristina Modat, Marc Bowyer, Ruth C. E. Nguyen, Long H. Drew, David A. Joshi, Amit D. Ma, Wenjie Guo, Chuan-Guo Lo, Chun-Han Ganesh, Sajaysurya Buwe, Abubakar Pujol, Joan Capdevila du Cadet, Julien Lavigne Visconti, Alessia Freidin, Maxim B. El-Sayed Moustafa, Julia S. Falchi, Mario Davies, Richard Gomez, Maria F. Fall, Tove Cardoso, M. Jorge Wolf, Jonathan Franks, Paul W. Chan, Andrew T. Spector, Tim D. Steves, Claire J. Ourselin, Sébastien Sci Adv Research Articles As no one symptom can predict disease severity or the need for dedicated medical support in coronavirus disease 2019 (COVID-19), we asked whether documenting symptom time series over the first few days informs outcome. Unsupervised time series clustering over symptom presentation was performed on data collected from a training dataset of completed cases enlisted early from the COVID Symptom Study Smartphone application, yielding six distinct symptom presentations. Clustering was validated on an independent replication dataset between 1 and 28 May 2020. Using the first 5 days of symptom logging, the ROC-AUC (receiver operating characteristic – area under the curve) of need for respiratory support was 78.8%, substantially outperforming personal characteristics alone (ROC-AUC 69.5%). Such an approach could be used to monitor at-risk patients and predict medical resource requirements days before they are required. American Association for the Advancement of Science 2021-03-19 /pmc/articles/PMC7978420/ /pubmed/33741586 http://dx.doi.org/10.1126/sciadv.abd4177 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Sudre, Carole H.
Lee, Karla A.
Lochlainn, Mary Ni
Varsavsky, Thomas
Murray, Benjamin
Graham, Mark S.
Menni, Cristina
Modat, Marc
Bowyer, Ruth C. E.
Nguyen, Long H.
Drew, David A.
Joshi, Amit D.
Ma, Wenjie
Guo, Chuan-Guo
Lo, Chun-Han
Ganesh, Sajaysurya
Buwe, Abubakar
Pujol, Joan Capdevila
du Cadet, Julien Lavigne
Visconti, Alessia
Freidin, Maxim B.
El-Sayed Moustafa, Julia S.
Falchi, Mario
Davies, Richard
Gomez, Maria F.
Fall, Tove
Cardoso, M. Jorge
Wolf, Jonathan
Franks, Paul W.
Chan, Andrew T.
Spector, Tim D.
Steves, Claire J.
Ourselin, Sébastien
Symptom clusters in COVID-19: A potential clinical prediction tool from the COVID Symptom Study app
title Symptom clusters in COVID-19: A potential clinical prediction tool from the COVID Symptom Study app
title_full Symptom clusters in COVID-19: A potential clinical prediction tool from the COVID Symptom Study app
title_fullStr Symptom clusters in COVID-19: A potential clinical prediction tool from the COVID Symptom Study app
title_full_unstemmed Symptom clusters in COVID-19: A potential clinical prediction tool from the COVID Symptom Study app
title_short Symptom clusters in COVID-19: A potential clinical prediction tool from the COVID Symptom Study app
title_sort symptom clusters in covid-19: a potential clinical prediction tool from the covid symptom study app
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7978420/
https://www.ncbi.nlm.nih.gov/pubmed/33741586
http://dx.doi.org/10.1126/sciadv.abd4177
work_keys_str_mv AT sudrecaroleh symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT leekarlaa symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT lochlainnmaryni symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT varsavskythomas symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT murraybenjamin symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT grahammarks symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT mennicristina symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT modatmarc symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT bowyerruthce symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT nguyenlongh symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT drewdavida symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT joshiamitd symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT mawenjie symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT guochuanguo symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT lochunhan symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT ganeshsajaysurya symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT buweabubakar symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT pujoljoancapdevila symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT ducadetjulienlavigne symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT viscontialessia symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT freidinmaximb symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT elsayedmoustafajulias symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT falchimario symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT daviesrichard symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT gomezmariaf symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT falltove symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT cardosomjorge symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT wolfjonathan symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT frankspaulw symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT chanandrewt symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT spectortimd symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT stevesclairej symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp
AT ourselinsebastien symptomclustersincovid19apotentialclinicalpredictiontoolfromthecovidsymptomstudyapp