Cargando…
Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys
Establishing how many people have been infected by SARS-CoV-2 remains an urgent priority for controlling the COVID-19 pandemic. Serological tests that identify past infection can be used to estimate cumulative incidence, but the relative accuracy and robustness of various sampling strategies have be...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979159/ https://www.ncbi.nlm.nih.gov/pubmed/33666169 http://dx.doi.org/10.7554/eLife.64206 |
_version_ | 1783667237646761984 |
---|---|
author | Larremore, Daniel B Fosdick, Bailey K Bubar, Kate M Zhang, Sam Kissler, Stephen M Metcalf, C Jessica E Buckee, Caroline O Grad, Yonatan H |
author_facet | Larremore, Daniel B Fosdick, Bailey K Bubar, Kate M Zhang, Sam Kissler, Stephen M Metcalf, C Jessica E Buckee, Caroline O Grad, Yonatan H |
author_sort | Larremore, Daniel B |
collection | PubMed |
description | Establishing how many people have been infected by SARS-CoV-2 remains an urgent priority for controlling the COVID-19 pandemic. Serological tests that identify past infection can be used to estimate cumulative incidence, but the relative accuracy and robustness of various sampling strategies have been unclear. We developed a flexible framework that integrates uncertainty from test characteristics, sample size, and heterogeneity in seroprevalence across subpopulations to compare estimates from sampling schemes. Using the same framework and making the assumption that seropositivity indicates immune protection, we propagated estimates and uncertainty through dynamical models to assess uncertainty in the epidemiological parameters needed to evaluate public health interventions and found that sampling schemes informed by demographics and contact networks outperform uniform sampling. The framework can be adapted to optimize serosurvey design given test characteristics and capacity, population demography, sampling strategy, and modeling approach, and can be tailored to support decision-making around introducing or removing interventions. |
format | Online Article Text |
id | pubmed-7979159 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-79791592021-03-22 Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys Larremore, Daniel B Fosdick, Bailey K Bubar, Kate M Zhang, Sam Kissler, Stephen M Metcalf, C Jessica E Buckee, Caroline O Grad, Yonatan H eLife Epidemiology and Global Health Establishing how many people have been infected by SARS-CoV-2 remains an urgent priority for controlling the COVID-19 pandemic. Serological tests that identify past infection can be used to estimate cumulative incidence, but the relative accuracy and robustness of various sampling strategies have been unclear. We developed a flexible framework that integrates uncertainty from test characteristics, sample size, and heterogeneity in seroprevalence across subpopulations to compare estimates from sampling schemes. Using the same framework and making the assumption that seropositivity indicates immune protection, we propagated estimates and uncertainty through dynamical models to assess uncertainty in the epidemiological parameters needed to evaluate public health interventions and found that sampling schemes informed by demographics and contact networks outperform uniform sampling. The framework can be adapted to optimize serosurvey design given test characteristics and capacity, population demography, sampling strategy, and modeling approach, and can be tailored to support decision-making around introducing or removing interventions. eLife Sciences Publications, Ltd 2021-03-05 /pmc/articles/PMC7979159/ /pubmed/33666169 http://dx.doi.org/10.7554/eLife.64206 Text en © 2021, Larremore et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Epidemiology and Global Health Larremore, Daniel B Fosdick, Bailey K Bubar, Kate M Zhang, Sam Kissler, Stephen M Metcalf, C Jessica E Buckee, Caroline O Grad, Yonatan H Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys |
title | Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys |
title_full | Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys |
title_fullStr | Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys |
title_full_unstemmed | Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys |
title_short | Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys |
title_sort | estimating sars-cov-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys |
topic | Epidemiology and Global Health |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979159/ https://www.ncbi.nlm.nih.gov/pubmed/33666169 http://dx.doi.org/10.7554/eLife.64206 |
work_keys_str_mv | AT larremoredanielb estimatingsarscov2seroprevalenceandepidemiologicalparameterswithuncertaintyfromserologicalsurveys AT fosdickbaileyk estimatingsarscov2seroprevalenceandepidemiologicalparameterswithuncertaintyfromserologicalsurveys AT bubarkatem estimatingsarscov2seroprevalenceandepidemiologicalparameterswithuncertaintyfromserologicalsurveys AT zhangsam estimatingsarscov2seroprevalenceandepidemiologicalparameterswithuncertaintyfromserologicalsurveys AT kisslerstephenm estimatingsarscov2seroprevalenceandepidemiologicalparameterswithuncertaintyfromserologicalsurveys AT metcalfcjessicae estimatingsarscov2seroprevalenceandepidemiologicalparameterswithuncertaintyfromserologicalsurveys AT buckeecarolineo estimatingsarscov2seroprevalenceandepidemiologicalparameterswithuncertaintyfromserologicalsurveys AT gradyonatanh estimatingsarscov2seroprevalenceandepidemiologicalparameterswithuncertaintyfromserologicalsurveys |