Cargando…

Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys

Establishing how many people have been infected by SARS-CoV-2 remains an urgent priority for controlling the COVID-19 pandemic. Serological tests that identify past infection can be used to estimate cumulative incidence, but the relative accuracy and robustness of various sampling strategies have be...

Descripción completa

Detalles Bibliográficos
Autores principales: Larremore, Daniel B, Fosdick, Bailey K, Bubar, Kate M, Zhang, Sam, Kissler, Stephen M, Metcalf, C Jessica E, Buckee, Caroline O, Grad, Yonatan H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979159/
https://www.ncbi.nlm.nih.gov/pubmed/33666169
http://dx.doi.org/10.7554/eLife.64206
_version_ 1783667237646761984
author Larremore, Daniel B
Fosdick, Bailey K
Bubar, Kate M
Zhang, Sam
Kissler, Stephen M
Metcalf, C Jessica E
Buckee, Caroline O
Grad, Yonatan H
author_facet Larremore, Daniel B
Fosdick, Bailey K
Bubar, Kate M
Zhang, Sam
Kissler, Stephen M
Metcalf, C Jessica E
Buckee, Caroline O
Grad, Yonatan H
author_sort Larremore, Daniel B
collection PubMed
description Establishing how many people have been infected by SARS-CoV-2 remains an urgent priority for controlling the COVID-19 pandemic. Serological tests that identify past infection can be used to estimate cumulative incidence, but the relative accuracy and robustness of various sampling strategies have been unclear. We developed a flexible framework that integrates uncertainty from test characteristics, sample size, and heterogeneity in seroprevalence across subpopulations to compare estimates from sampling schemes. Using the same framework and making the assumption that seropositivity indicates immune protection, we propagated estimates and uncertainty through dynamical models to assess uncertainty in the epidemiological parameters needed to evaluate public health interventions and found that sampling schemes informed by demographics and contact networks outperform uniform sampling. The framework can be adapted to optimize serosurvey design given test characteristics and capacity, population demography, sampling strategy, and modeling approach, and can be tailored to support decision-making around introducing or removing interventions.
format Online
Article
Text
id pubmed-7979159
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-79791592021-03-22 Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys Larremore, Daniel B Fosdick, Bailey K Bubar, Kate M Zhang, Sam Kissler, Stephen M Metcalf, C Jessica E Buckee, Caroline O Grad, Yonatan H eLife Epidemiology and Global Health Establishing how many people have been infected by SARS-CoV-2 remains an urgent priority for controlling the COVID-19 pandemic. Serological tests that identify past infection can be used to estimate cumulative incidence, but the relative accuracy and robustness of various sampling strategies have been unclear. We developed a flexible framework that integrates uncertainty from test characteristics, sample size, and heterogeneity in seroprevalence across subpopulations to compare estimates from sampling schemes. Using the same framework and making the assumption that seropositivity indicates immune protection, we propagated estimates and uncertainty through dynamical models to assess uncertainty in the epidemiological parameters needed to evaluate public health interventions and found that sampling schemes informed by demographics and contact networks outperform uniform sampling. The framework can be adapted to optimize serosurvey design given test characteristics and capacity, population demography, sampling strategy, and modeling approach, and can be tailored to support decision-making around introducing or removing interventions. eLife Sciences Publications, Ltd 2021-03-05 /pmc/articles/PMC7979159/ /pubmed/33666169 http://dx.doi.org/10.7554/eLife.64206 Text en © 2021, Larremore et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Epidemiology and Global Health
Larremore, Daniel B
Fosdick, Bailey K
Bubar, Kate M
Zhang, Sam
Kissler, Stephen M
Metcalf, C Jessica E
Buckee, Caroline O
Grad, Yonatan H
Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys
title Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys
title_full Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys
title_fullStr Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys
title_full_unstemmed Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys
title_short Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys
title_sort estimating sars-cov-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys
topic Epidemiology and Global Health
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979159/
https://www.ncbi.nlm.nih.gov/pubmed/33666169
http://dx.doi.org/10.7554/eLife.64206
work_keys_str_mv AT larremoredanielb estimatingsarscov2seroprevalenceandepidemiologicalparameterswithuncertaintyfromserologicalsurveys
AT fosdickbaileyk estimatingsarscov2seroprevalenceandepidemiologicalparameterswithuncertaintyfromserologicalsurveys
AT bubarkatem estimatingsarscov2seroprevalenceandepidemiologicalparameterswithuncertaintyfromserologicalsurveys
AT zhangsam estimatingsarscov2seroprevalenceandepidemiologicalparameterswithuncertaintyfromserologicalsurveys
AT kisslerstephenm estimatingsarscov2seroprevalenceandepidemiologicalparameterswithuncertaintyfromserologicalsurveys
AT metcalfcjessicae estimatingsarscov2seroprevalenceandepidemiologicalparameterswithuncertaintyfromserologicalsurveys
AT buckeecarolineo estimatingsarscov2seroprevalenceandepidemiologicalparameterswithuncertaintyfromserologicalsurveys
AT gradyonatanh estimatingsarscov2seroprevalenceandepidemiologicalparameterswithuncertaintyfromserologicalsurveys