Cargando…

Synthesizing Context-free Grammars from Recurrent Neural Networks

We present an algorithm for extracting a subclass of the context free grammars (CFGs) from a trained recurrent neural network (RNN). We develop a new framework, pattern rule sets (PRSs), which describe sequences of deterministic finite automata (DFAs) that approximate a non-regular language. We pres...

Descripción completa

Detalles Bibliográficos
Autores principales: Yellin, Daniel M., Weiss, Gail
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979173/
http://dx.doi.org/10.1007/978-3-030-72016-2_19
Descripción
Sumario:We present an algorithm for extracting a subclass of the context free grammars (CFGs) from a trained recurrent neural network (RNN). We develop a new framework, pattern rule sets (PRSs), which describe sequences of deterministic finite automata (DFAs) that approximate a non-regular language. We present an algorithm for recovering the PRS behind a sequence of such automata, and apply it to the sequences of automata extracted from trained RNNs using the [Formula: see text] algorithm. We then show how the PRS may converted into a CFG, enabling a familiar and useful presentation of the learned language. Extracting the learned language of an RNN is important to facilitate understanding of the RNN and to verify its correctness. Furthermore, the extracted CFG can augment the RNN in classifying correct sentences, as the RNN’s predictive accuracy decreases when the recursion depth and distance between matching delimiters of its input sequences increases.