Cargando…

SAT Solving with GPU Accelerated Inprocessing

Since 2013, the leading SAT solvers in the SAT competition all use inprocessing, which unlike preprocessing, interleaves search with simplifications. However, applying inprocessing frequently can still be a bottle neck, i.e., for hard or large formulas. In this work, we introduce the first attempt t...

Descripción completa

Detalles Bibliográficos
Autores principales: Osama, Muhammad, Wijs, Anton, Biere, Armin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979176/
http://dx.doi.org/10.1007/978-3-030-72016-2_8
Descripción
Sumario:Since 2013, the leading SAT solvers in the SAT competition all use inprocessing, which unlike preprocessing, interleaves search with simplifications. However, applying inprocessing frequently can still be a bottle neck, i.e., for hard or large formulas. In this work, we introduce the first attempt to parallelize inprocessing on GPU architectures. As memory is a scarce resource in GPUs, we present new space-efficient data structures and devise a data-parallel garbage collector. It runs in parallel on the GPU to reduce memory consumption and improves memory access locality. Our new parallel variable elimination algorithm is twice as fast as previous work. In experiments our new solver ParaFROST solves many benchmarks faster on the GPU than its sequential counterparts.