Cargando…

Finding Provably Optimal Markov Chains

Parametric Markov chains (pMCs) are Markov chains with symbolic (aka: parametric) transition probabilities. They are a convenient operational model to treat robustness against uncertainties. A typical objective is to find the parameter values that maximize the reachability of some target states. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Spel, Jip, Junges, Sebastian, Katoen, Joost-Pieter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979194/
http://dx.doi.org/10.1007/978-3-030-72016-2_10
Descripción
Sumario:Parametric Markov chains (pMCs) are Markov chains with symbolic (aka: parametric) transition probabilities. They are a convenient operational model to treat robustness against uncertainties. A typical objective is to find the parameter values that maximize the reachability of some target states. In this paper, we consider automatically proving robustness, that is, an [Formula: see text] -close upper bound on the maximal reachability probability. The result of our procedure actually provides an almost-optimal parameter valuation along with this upper bound. We propose to tackle these ETR-hard problems by a tight combination of two significantly different techniques: monotonicity checking and parameter lifting. The former builds a partial order on states to check whether a pMC is (local or global) monotonic in a certain parameter, whereas parameter lifting is an abstraction technique based on the iterative evaluation of pMCs without parameter dependencies. We explain our novel algorithmic approach and experimentally show that we significantly improve the time to determine almost-optimal synthesis.