Cargando…

Exploring the Relationship between Gray and White Matter in Healthy Adults: A Hybrid Research of Cortical Reconstruction and Tractography

The gray matter (GM) and white matter (WM) are structurally and functionally related in the human brain. Among the numerous neuroimaging studies, yet only a few have investigated these two structures in the same sample. So, there is limited and inconsistent information about how they are correlated...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Yongxiang, Li, Qianqian, Du, Jiachen, He, Hongjian, Liang, Peipeng, Lu, Jie, Li, Kuncheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979294/
https://www.ncbi.nlm.nih.gov/pubmed/33778072
http://dx.doi.org/10.1155/2021/6628506
Descripción
Sumario:The gray matter (GM) and white matter (WM) are structurally and functionally related in the human brain. Among the numerous neuroimaging studies, yet only a few have investigated these two structures in the same sample. So, there is limited and inconsistent information about how they are correlated in the brain of healthy adults. In this study, we combined cortical reconstruction with diffusion spectrum imaging (DSI) tractography to investigate the relationship between cortical morphology and microstructural properties of major WM tracts in 163 healthy young adults. The results showed that cortical thickness (CTh) was positively correlated with the coherent tract-wise fractional anisotropy (FA) value, and the correlation was stronger in the dorsal areas than in the ventral areas. For other diffusion parameters, CTh was positively correlated with axial diffusivity (AD) of coherent fibers in the frontal areas and negatively correlated with radial diffusivity (RD) of coherent fibers in the dorsal areas. These findings suggest that the correlation between GM and WM is inhomogeneity and could be interpreted with different mechanisms in different brain regions. We hope our research could provide new insights into the studies of diseases in which the GM and WM are both affected.