Cargando…
3D CNN with Visual Insights for Early Detection of Lung Cancer Using Gradient-Weighted Class Activation
The 3D convolutional neural network is able to make use of the full nonlinear 3D context information of lung nodule detection from the DICOM (Digital Imaging and Communications in Medicine) images, and the Gradient Class Activation has shown to be useful for tailoring classification tasks and locali...
Autores principales: | Neal Joshua, Eali Stephen, Bhattacharyya, Debnath, Chakkravarthy, Midhun, Byun, Yung-Cheol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979307/ https://www.ncbi.nlm.nih.gov/pubmed/33777347 http://dx.doi.org/10.1155/2021/6695518 |
Ejemplares similares
-
A bi-directional deep learning architecture for lung nodule semantic segmentation
por: Bhattacharyya, Debnath, et al.
Publicado: (2022) -
GW- CNNDC: Gradient weighted CNN model for diagnosing COVID-19 using radiography X-ray images
por: Udayaraju, Pamula, et al.
Publicado: (2023) -
Three-Class Mammogram Classification Based on Descriptive CNN Features
por: Jadoon, M. Mohsin, et al.
Publicado: (2017) -
Multichannel CNN Model for Biomedical Entity Reorganization
por: Singh, Ajay Kumar, et al.
Publicado: (2022) -
Multi-Class Weed Recognition Using Hybrid CNN-SVM Classifier
por: Wu, Yanjuan, et al.
Publicado: (2023)