Cargando…
Fully automated body composition analysis in routine CT imaging using 3D semantic segmentation convolutional neural networks
OBJECTIVES: Body tissue composition is a long-known biomarker with high diagnostic and prognostic value not only in cardiovascular, oncological, and orthopedic diseases but also in rehabilitation medicine or drug dosage. In this study, the aim was to develop a fully automated, reproducible, and quan...
Autores principales: | Koitka, Sven, Kroll, Lennard, Malamutmann, Eugen, Oezcelik, Arzu, Nensa, Felix |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979624/ https://www.ncbi.nlm.nih.gov/pubmed/32945971 http://dx.doi.org/10.1007/s00330-020-07147-3 |
Ejemplares similares
-
Correction to: Fully automated body composition analysis in routine CT imaging using 3D semantic segmentation convolutional neural networks
por: Koitka, Sven, et al.
Publicado: (2020) -
Fully automated preoperative liver volumetry incorporating the anatomical location of the central hepatic vein
por: Koitka, Sven, et al.
Publicado: (2022) -
Contrast agent dose reduction in computed tomography with deep learning using a conditional generative adversarial network
por: Haubold, Johannes, et al.
Publicado: (2021) -
Fully automated segmentation and radiomics feature extraction of hypopharyngeal cancer on MRI using deep learning
por: Lin, Yu-Chun, et al.
Publicado: (2023) -
Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network
por: Chen, Chaoyue, et al.
Publicado: (2022)