Cargando…
Practical applications of deep learning: classifying the most common categories of plain radiographs in a PACS using a neural network
OBJECTIVES: The goal of the present study was to classify the most common types of plain radiographs using a neural network and to validate the network’s performance on internal and external data. Such a network could help improve various radiological workflows. METHODS: All radiographs from the yea...
Autores principales: | Dratsch, Thomas, Korenkov, Michael, Zopfs, David, Brodehl, Sebastian, Baessler, Bettina, Giese, Daniel, Brinkmann, Sebastian, Maintz, David, Pinto dos Santos, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979627/ https://www.ncbi.nlm.nih.gov/pubmed/32986160 http://dx.doi.org/10.1007/s00330-020-07241-6 |
Ejemplares similares
-
Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs
por: Cheng, Chi-Tung, et al.
Publicado: (2019) -
Studying the Evolution of Neural Activation Patterns During Training of Feed-Forward ReLU Networks
por: Hartmann, David, et al.
Publicado: (2021) -
Deep Learning–driven classification of external DICOM studies for PACS archiving
por: Jonske, Frederic, et al.
Publicado: (2022) -
Machine learning classifiers can predict Gleason pattern 4 prostate cancer with greater accuracy than experienced radiologists
por: Antonelli, Michela, et al.
Publicado: (2019) -
Pediatric age estimation from radiographs of the knee using deep learning
por: Demircioğlu, Aydin, et al.
Publicado: (2022)