Cargando…
Removing leakage-induced correlated errors in superconducting quantum error correction
Quantum computing can become scalable through error correction, but logical error rates only decrease with system size when physical errors are sufficiently uncorrelated. During computation, unused high energy levels of the qubits can become excited, creating leakage states that are long-lived and m...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979694/ https://www.ncbi.nlm.nih.gov/pubmed/33741936 http://dx.doi.org/10.1038/s41467-021-21982-y |
_version_ | 1783667315876823040 |
---|---|
author | McEwen, M. Kafri, D. Chen, Z. Atalaya, J. Satzinger, K. J. Quintana, C. Klimov, P. V. Sank, D. Gidney, C. Fowler, A. G. Arute, F. Arya, K. Buckley, B. Burkett, B. Bushnell, N. Chiaro, B. Collins, R. Demura, S. Dunsworth, A. Erickson, C. Foxen, B. Giustina, M. Huang, T. Hong, S. Jeffrey, E. Kim, S. Kechedzhi, K. Kostritsa, F. Laptev, P. Megrant, A. Mi, X. Mutus, J. Naaman, O. Neeley, M. Neill, C. Niu, M. Paler, A. Redd, N. Roushan, P. White, T. C. Yao, J. Yeh, P. Zalcman, A. Chen, Yu Smelyanskiy, V. N. Martinis, John M. Neven, H. Kelly, J. Korotkov, A. N. Petukhov, A. G. Barends, R. |
author_facet | McEwen, M. Kafri, D. Chen, Z. Atalaya, J. Satzinger, K. J. Quintana, C. Klimov, P. V. Sank, D. Gidney, C. Fowler, A. G. Arute, F. Arya, K. Buckley, B. Burkett, B. Bushnell, N. Chiaro, B. Collins, R. Demura, S. Dunsworth, A. Erickson, C. Foxen, B. Giustina, M. Huang, T. Hong, S. Jeffrey, E. Kim, S. Kechedzhi, K. Kostritsa, F. Laptev, P. Megrant, A. Mi, X. Mutus, J. Naaman, O. Neeley, M. Neill, C. Niu, M. Paler, A. Redd, N. Roushan, P. White, T. C. Yao, J. Yeh, P. Zalcman, A. Chen, Yu Smelyanskiy, V. N. Martinis, John M. Neven, H. Kelly, J. Korotkov, A. N. Petukhov, A. G. Barends, R. |
author_sort | McEwen, M. |
collection | PubMed |
description | Quantum computing can become scalable through error correction, but logical error rates only decrease with system size when physical errors are sufficiently uncorrelated. During computation, unused high energy levels of the qubits can become excited, creating leakage states that are long-lived and mobile. Particularly for superconducting transmon qubits, this leakage opens a path to errors that are correlated in space and time. Here, we report a reset protocol that returns a qubit to the ground state from all relevant higher level states. We test its performance with the bit-flip stabilizer code, a simplified version of the surface code for quantum error correction. We investigate the accumulation and dynamics of leakage during error correction. Using this protocol, we find lower rates of logical errors and an improved scaling and stability of error suppression with increasing qubit number. This demonstration provides a key step on the path towards scalable quantum computing. |
format | Online Article Text |
id | pubmed-7979694 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-79796942021-04-16 Removing leakage-induced correlated errors in superconducting quantum error correction McEwen, M. Kafri, D. Chen, Z. Atalaya, J. Satzinger, K. J. Quintana, C. Klimov, P. V. Sank, D. Gidney, C. Fowler, A. G. Arute, F. Arya, K. Buckley, B. Burkett, B. Bushnell, N. Chiaro, B. Collins, R. Demura, S. Dunsworth, A. Erickson, C. Foxen, B. Giustina, M. Huang, T. Hong, S. Jeffrey, E. Kim, S. Kechedzhi, K. Kostritsa, F. Laptev, P. Megrant, A. Mi, X. Mutus, J. Naaman, O. Neeley, M. Neill, C. Niu, M. Paler, A. Redd, N. Roushan, P. White, T. C. Yao, J. Yeh, P. Zalcman, A. Chen, Yu Smelyanskiy, V. N. Martinis, John M. Neven, H. Kelly, J. Korotkov, A. N. Petukhov, A. G. Barends, R. Nat Commun Article Quantum computing can become scalable through error correction, but logical error rates only decrease with system size when physical errors are sufficiently uncorrelated. During computation, unused high energy levels of the qubits can become excited, creating leakage states that are long-lived and mobile. Particularly for superconducting transmon qubits, this leakage opens a path to errors that are correlated in space and time. Here, we report a reset protocol that returns a qubit to the ground state from all relevant higher level states. We test its performance with the bit-flip stabilizer code, a simplified version of the surface code for quantum error correction. We investigate the accumulation and dynamics of leakage during error correction. Using this protocol, we find lower rates of logical errors and an improved scaling and stability of error suppression with increasing qubit number. This demonstration provides a key step on the path towards scalable quantum computing. Nature Publishing Group UK 2021-03-19 /pmc/articles/PMC7979694/ /pubmed/33741936 http://dx.doi.org/10.1038/s41467-021-21982-y Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article McEwen, M. Kafri, D. Chen, Z. Atalaya, J. Satzinger, K. J. Quintana, C. Klimov, P. V. Sank, D. Gidney, C. Fowler, A. G. Arute, F. Arya, K. Buckley, B. Burkett, B. Bushnell, N. Chiaro, B. Collins, R. Demura, S. Dunsworth, A. Erickson, C. Foxen, B. Giustina, M. Huang, T. Hong, S. Jeffrey, E. Kim, S. Kechedzhi, K. Kostritsa, F. Laptev, P. Megrant, A. Mi, X. Mutus, J. Naaman, O. Neeley, M. Neill, C. Niu, M. Paler, A. Redd, N. Roushan, P. White, T. C. Yao, J. Yeh, P. Zalcman, A. Chen, Yu Smelyanskiy, V. N. Martinis, John M. Neven, H. Kelly, J. Korotkov, A. N. Petukhov, A. G. Barends, R. Removing leakage-induced correlated errors in superconducting quantum error correction |
title | Removing leakage-induced correlated errors in superconducting quantum error correction |
title_full | Removing leakage-induced correlated errors in superconducting quantum error correction |
title_fullStr | Removing leakage-induced correlated errors in superconducting quantum error correction |
title_full_unstemmed | Removing leakage-induced correlated errors in superconducting quantum error correction |
title_short | Removing leakage-induced correlated errors in superconducting quantum error correction |
title_sort | removing leakage-induced correlated errors in superconducting quantum error correction |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979694/ https://www.ncbi.nlm.nih.gov/pubmed/33741936 http://dx.doi.org/10.1038/s41467-021-21982-y |
work_keys_str_mv | AT mcewenm removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT kafrid removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT chenz removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT atalayaj removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT satzingerkj removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT quintanac removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT klimovpv removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT sankd removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT gidneyc removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT fowlerag removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT arutef removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT aryak removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT buckleyb removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT burkettb removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT bushnelln removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT chiarob removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT collinsr removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT demuras removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT dunswortha removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT ericksonc removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT foxenb removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT giustinam removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT huangt removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT hongs removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT jeffreye removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT kims removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT kechedzhik removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT kostritsaf removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT laptevp removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT megranta removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT mix removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT mutusj removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT naamano removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT neeleym removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT neillc removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT nium removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT palera removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT reddn removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT roushanp removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT whitetc removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT yaoj removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT yehp removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT zalcmana removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT chenyu removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT smelyanskiyvn removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT martinisjohnm removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT nevenh removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT kellyj removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT korotkovan removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT petukhovag removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection AT barendsr removingleakageinducedcorrelatederrorsinsuperconductingquantumerrorcorrection |