Cargando…
Measurement of the neutron charge radius and the role of its constituents
The neutron is a cornerstone in our depiction of the visible universe. Despite the neutron zero-net electric charge, the asymmetric distribution of the positively- (up) and negatively-charged (down) quarks, a result of the complex quark-gluon dynamics, lead to a negative value for its squared charge...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979702/ https://www.ncbi.nlm.nih.gov/pubmed/33741952 http://dx.doi.org/10.1038/s41467-021-22028-z |
Sumario: | The neutron is a cornerstone in our depiction of the visible universe. Despite the neutron zero-net electric charge, the asymmetric distribution of the positively- (up) and negatively-charged (down) quarks, a result of the complex quark-gluon dynamics, lead to a negative value for its squared charge radius, [Formula: see text] . The precise measurement of the neutron’s charge radius thus emerges as an essential part of unraveling its structure. Here we report on a [Formula: see text] measurement, based on the extraction of the neutron electric form factor, [Formula: see text] , at low four-momentum transfer squared (Q(2)) by exploiting the long known connection between the N → Δ quadrupole transitions and the neutron electric form factor. Our result, [Formula: see text] , addresses long standing unresolved discrepancies in the [Formula: see text] determination. The dynamics of the strong nuclear force can be viewed through the precise picture of the neutron’s constituent distributions that result into the non-zero [Formula: see text] value. |
---|