Cargando…
Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design
Microbial rhodopsins are photoreceptive membrane proteins, which are used as molecular tools in optogenetics. Here, a machine learning (ML)-based experimental design method is introduced for screening rhodopsins that are likely to be red-shifted from representative rhodopsins in the same subfamily....
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979833/ https://www.ncbi.nlm.nih.gov/pubmed/33742139 http://dx.doi.org/10.1038/s42003-021-01878-9 |
Sumario: | Microbial rhodopsins are photoreceptive membrane proteins, which are used as molecular tools in optogenetics. Here, a machine learning (ML)-based experimental design method is introduced for screening rhodopsins that are likely to be red-shifted from representative rhodopsins in the same subfamily. Among 3,022 ion-pumping rhodopsins that were suggested by a protein BLAST search in several protein databases, the ML-based method selected 65 candidate rhodopsins. The wavelengths of 39 of them were able to be experimentally determined by expressing proteins with the Escherichia coli system, and 32 (82%, p = 7.025 × 10(−5)) actually showed red-shift gains. In addition, four showed red-shift gains >20 nm, and two were found to have desirable ion-transporting properties, indicating that they would be potentially useful in optogenetics. These findings suggest that data-driven ML-based approaches play effective roles in the experimental design of rhodopsin and other photobiological studies. (141/150 words). |
---|