Cargando…

A 3D analytical ion transport model for ionic polymer metal composite actuators in large bending deformations

Ionic polymer metal composites (IPMCs) are a kind of soft electroactive polymer composites. An IPMC strip commonly has a thin polymer membrane coated with a noble metal as electrodes on both sides. Whenever an electric voltage is applied to the IPMC, it bends and whenever it is deformed, a low volta...

Descripción completa

Detalles Bibliográficos
Autores principales: Annabestani, Mohsen, Naghavi, Nadia, Maymandi-Nejad, Mohammad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979887/
https://www.ncbi.nlm.nih.gov/pubmed/33742020
http://dx.doi.org/10.1038/s41598-021-85776-4
Descripción
Sumario:Ionic polymer metal composites (IPMCs) are a kind of soft electroactive polymer composites. An IPMC strip commonly has a thin polymer membrane coated with a noble metal as electrodes on both sides. Whenever an electric voltage is applied to the IPMC, it bends and whenever it is deformed, a low voltage is measurable between its electrodes, hence IPMC is an actuator as well as a sensor. They are well known for their promising features like low density, lightness, high toughness and remarkable stimulus strain, also, they have the potential for low-voltage operation while exhibiting acceptable large bending deformation. In this paper, a three-dimensional (3D), dynamic and physics-based model is presented analytically and experimentally for IPMC actuators. The model combines the ion transport dynamics within the IPMC and the bending dynamics of it as a beam under an electrical stimulation. In particular, we present an analytical model to create a relation between the input voltage and the output tip displacement of an IPMC actuator for large bending deformations. Experimental results show that the proposed model captures well the tip displacement.