Cargando…

Infrared photoconduction at the diffusion length limit in HgTe nanocrystal arrays

Narrow band gap nanocrystals offer an interesting platform for alternative design of low-cost infrared sensors. It has been demonstrated that transport in HgTe nanocrystal arrays occurs between strongly-coupled islands of nanocrystals in which charges are partly delocalized. This, combined with the...

Descripción completa

Detalles Bibliográficos
Autores principales: Chu, Audrey, Gréboval, Charlie, Prado, Yoann, Majjad, Hicham, Delerue, Christophe, Dayen, Jean-Francois, Vincent, Grégory, Lhuillier, Emmanuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979921/
https://www.ncbi.nlm.nih.gov/pubmed/33741921
http://dx.doi.org/10.1038/s41467-021-21959-x
Descripción
Sumario:Narrow band gap nanocrystals offer an interesting platform for alternative design of low-cost infrared sensors. It has been demonstrated that transport in HgTe nanocrystal arrays occurs between strongly-coupled islands of nanocrystals in which charges are partly delocalized. This, combined with the scaling of the noise with the active volume of the film, make case for device size reduction. Here, with two steps of optical lithography we design a nanotrench which effective channel length corresponds to 5–10 nanocrystals, matching the carrier diffusion length. We demonstrate responsivity as high as 1 kA W(−1), which is 10(5) times higher than for conventional µm-scale channel length. In this work the associated specific detectivity exceeds 10(12) Jones for 2.5 µm peak detection under 1 V at 200 K and 1 kHz, while the time response is as short as 20 µs, making this performance the highest reported for HgTe NC-based extended short-wave infrared detection.