Cargando…

Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge

Consumer wearables and sensors are a rich source of data about patients’ daily disease and symptom burden, particularly in the case of movement disorders like Parkinson’s disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approach...

Descripción completa

Detalles Bibliográficos
Autores principales: Sieberts, Solveig K., Schaff, Jennifer, Duda, Marlena, Pataki, Bálint Ármin, Sun, Ming, Snyder, Phil, Daneault, Jean-Francois, Parisi, Federico, Costante, Gianluca, Rubin, Udi, Banda, Peter, Chae, Yooree, Chaibub Neto, Elias, Dorsey, E. Ray, Aydın, Zafer, Chen, Aipeng, Elo, Laura L., Espino, Carlos, Glaab, Enrico, Goan, Ethan, Golabchi, Fatemeh Noushin, Görmez, Yasin, Jaakkola, Maria K., Jonnagaddala, Jitendra, Klén, Riku, Li, Dongmei, McDaniel, Christian, Perrin, Dimitri, Perumal, Thanneer M., Rad, Nastaran Mohammadian, Rainaldi, Erin, Sapienza, Stefano, Schwab, Patrick, Shokhirev, Nikolai, Venäläinen, Mikko S., Vergara-Diaz, Gloria, Zhang, Yuqian, Wang, Yuanjia, Guan, Yuanfang, Brunner, Daniela, Bonato, Paolo, Mangravite, Lara M., Omberg, Larsson
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979931/
https://www.ncbi.nlm.nih.gov/pubmed/33742069
http://dx.doi.org/10.1038/s41746-021-00414-7
Descripción
Sumario:Consumer wearables and sensors are a rich source of data about patients’ daily disease and symptom burden, particularly in the case of movement disorders like Parkinson’s disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC = 0.87), as well as tremor- (best AUPR = 0.75), dyskinesia- (best AUPR = 0.48) and bradykinesia-severity (best AUPR = 0.95).