Cargando…

Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge

Consumer wearables and sensors are a rich source of data about patients’ daily disease and symptom burden, particularly in the case of movement disorders like Parkinson’s disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approach...

Descripción completa

Detalles Bibliográficos
Autores principales: Sieberts, Solveig K., Schaff, Jennifer, Duda, Marlena, Pataki, Bálint Ármin, Sun, Ming, Snyder, Phil, Daneault, Jean-Francois, Parisi, Federico, Costante, Gianluca, Rubin, Udi, Banda, Peter, Chae, Yooree, Chaibub Neto, Elias, Dorsey, E. Ray, Aydın, Zafer, Chen, Aipeng, Elo, Laura L., Espino, Carlos, Glaab, Enrico, Goan, Ethan, Golabchi, Fatemeh Noushin, Görmez, Yasin, Jaakkola, Maria K., Jonnagaddala, Jitendra, Klén, Riku, Li, Dongmei, McDaniel, Christian, Perrin, Dimitri, Perumal, Thanneer M., Rad, Nastaran Mohammadian, Rainaldi, Erin, Sapienza, Stefano, Schwab, Patrick, Shokhirev, Nikolai, Venäläinen, Mikko S., Vergara-Diaz, Gloria, Zhang, Yuqian, Wang, Yuanjia, Guan, Yuanfang, Brunner, Daniela, Bonato, Paolo, Mangravite, Lara M., Omberg, Larsson
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979931/
https://www.ncbi.nlm.nih.gov/pubmed/33742069
http://dx.doi.org/10.1038/s41746-021-00414-7
_version_ 1783667366474809344
author Sieberts, Solveig K.
Schaff, Jennifer
Duda, Marlena
Pataki, Bálint Ármin
Sun, Ming
Snyder, Phil
Daneault, Jean-Francois
Parisi, Federico
Costante, Gianluca
Rubin, Udi
Banda, Peter
Chae, Yooree
Chaibub Neto, Elias
Dorsey, E. Ray
Aydın, Zafer
Chen, Aipeng
Elo, Laura L.
Espino, Carlos
Glaab, Enrico
Goan, Ethan
Golabchi, Fatemeh Noushin
Görmez, Yasin
Jaakkola, Maria K.
Jonnagaddala, Jitendra
Klén, Riku
Li, Dongmei
McDaniel, Christian
Perrin, Dimitri
Perumal, Thanneer M.
Rad, Nastaran Mohammadian
Rainaldi, Erin
Sapienza, Stefano
Schwab, Patrick
Shokhirev, Nikolai
Venäläinen, Mikko S.
Vergara-Diaz, Gloria
Zhang, Yuqian
Wang, Yuanjia
Guan, Yuanfang
Brunner, Daniela
Bonato, Paolo
Mangravite, Lara M.
Omberg, Larsson
author_facet Sieberts, Solveig K.
Schaff, Jennifer
Duda, Marlena
Pataki, Bálint Ármin
Sun, Ming
Snyder, Phil
Daneault, Jean-Francois
Parisi, Federico
Costante, Gianluca
Rubin, Udi
Banda, Peter
Chae, Yooree
Chaibub Neto, Elias
Dorsey, E. Ray
Aydın, Zafer
Chen, Aipeng
Elo, Laura L.
Espino, Carlos
Glaab, Enrico
Goan, Ethan
Golabchi, Fatemeh Noushin
Görmez, Yasin
Jaakkola, Maria K.
Jonnagaddala, Jitendra
Klén, Riku
Li, Dongmei
McDaniel, Christian
Perrin, Dimitri
Perumal, Thanneer M.
Rad, Nastaran Mohammadian
Rainaldi, Erin
Sapienza, Stefano
Schwab, Patrick
Shokhirev, Nikolai
Venäläinen, Mikko S.
Vergara-Diaz, Gloria
Zhang, Yuqian
Wang, Yuanjia
Guan, Yuanfang
Brunner, Daniela
Bonato, Paolo
Mangravite, Lara M.
Omberg, Larsson
author_sort Sieberts, Solveig K.
collection PubMed
description Consumer wearables and sensors are a rich source of data about patients’ daily disease and symptom burden, particularly in the case of movement disorders like Parkinson’s disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC = 0.87), as well as tremor- (best AUPR = 0.75), dyskinesia- (best AUPR = 0.48) and bradykinesia-severity (best AUPR = 0.95).
format Online
Article
Text
id pubmed-7979931
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-79799312021-04-12 Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge Sieberts, Solveig K. Schaff, Jennifer Duda, Marlena Pataki, Bálint Ármin Sun, Ming Snyder, Phil Daneault, Jean-Francois Parisi, Federico Costante, Gianluca Rubin, Udi Banda, Peter Chae, Yooree Chaibub Neto, Elias Dorsey, E. Ray Aydın, Zafer Chen, Aipeng Elo, Laura L. Espino, Carlos Glaab, Enrico Goan, Ethan Golabchi, Fatemeh Noushin Görmez, Yasin Jaakkola, Maria K. Jonnagaddala, Jitendra Klén, Riku Li, Dongmei McDaniel, Christian Perrin, Dimitri Perumal, Thanneer M. Rad, Nastaran Mohammadian Rainaldi, Erin Sapienza, Stefano Schwab, Patrick Shokhirev, Nikolai Venäläinen, Mikko S. Vergara-Diaz, Gloria Zhang, Yuqian Wang, Yuanjia Guan, Yuanfang Brunner, Daniela Bonato, Paolo Mangravite, Lara M. Omberg, Larsson NPJ Digit Med Article Consumer wearables and sensors are a rich source of data about patients’ daily disease and symptom burden, particularly in the case of movement disorders like Parkinson’s disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC = 0.87), as well as tremor- (best AUPR = 0.75), dyskinesia- (best AUPR = 0.48) and bradykinesia-severity (best AUPR = 0.95). Nature Publishing Group UK 2021-03-19 /pmc/articles/PMC7979931/ /pubmed/33742069 http://dx.doi.org/10.1038/s41746-021-00414-7 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Sieberts, Solveig K.
Schaff, Jennifer
Duda, Marlena
Pataki, Bálint Ármin
Sun, Ming
Snyder, Phil
Daneault, Jean-Francois
Parisi, Federico
Costante, Gianluca
Rubin, Udi
Banda, Peter
Chae, Yooree
Chaibub Neto, Elias
Dorsey, E. Ray
Aydın, Zafer
Chen, Aipeng
Elo, Laura L.
Espino, Carlos
Glaab, Enrico
Goan, Ethan
Golabchi, Fatemeh Noushin
Görmez, Yasin
Jaakkola, Maria K.
Jonnagaddala, Jitendra
Klén, Riku
Li, Dongmei
McDaniel, Christian
Perrin, Dimitri
Perumal, Thanneer M.
Rad, Nastaran Mohammadian
Rainaldi, Erin
Sapienza, Stefano
Schwab, Patrick
Shokhirev, Nikolai
Venäläinen, Mikko S.
Vergara-Diaz, Gloria
Zhang, Yuqian
Wang, Yuanjia
Guan, Yuanfang
Brunner, Daniela
Bonato, Paolo
Mangravite, Lara M.
Omberg, Larsson
Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge
title Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge
title_full Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge
title_fullStr Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge
title_full_unstemmed Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge
title_short Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge
title_sort crowdsourcing digital health measures to predict parkinson’s disease severity: the parkinson’s disease digital biomarker dream challenge
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979931/
https://www.ncbi.nlm.nih.gov/pubmed/33742069
http://dx.doi.org/10.1038/s41746-021-00414-7
work_keys_str_mv AT siebertssolveigk crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT schaffjennifer crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT dudamarlena crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT patakibalintarmin crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT sunming crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT snyderphil crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT daneaultjeanfrancois crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT parisifederico crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT costantegianluca crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT rubinudi crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT bandapeter crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT chaeyooree crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT chaibubnetoelias crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT dorseyeray crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT aydınzafer crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT chenaipeng crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT elolaural crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT espinocarlos crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT glaabenrico crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT goanethan crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT golabchifatemehnoushin crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT gormezyasin crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT jaakkolamariak crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT jonnagaddalajitendra crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT klenriku crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT lidongmei crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT mcdanielchristian crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT perrindimitri crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT perumalthanneerm crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT radnastaranmohammadian crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT rainaldierin crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT sapienzastefano crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT schwabpatrick crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT shokhirevnikolai crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT venalainenmikkos crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT vergaradiazgloria crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT zhangyuqian crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT wangyuanjia crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT guanyuanfang crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT brunnerdaniela crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT bonatopaolo crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT mangravitelaram crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge
AT omberglarsson crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge