Cargando…
Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge
Consumer wearables and sensors are a rich source of data about patients’ daily disease and symptom burden, particularly in the case of movement disorders like Parkinson’s disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approach...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979931/ https://www.ncbi.nlm.nih.gov/pubmed/33742069 http://dx.doi.org/10.1038/s41746-021-00414-7 |
_version_ | 1783667366474809344 |
---|---|
author | Sieberts, Solveig K. Schaff, Jennifer Duda, Marlena Pataki, Bálint Ármin Sun, Ming Snyder, Phil Daneault, Jean-Francois Parisi, Federico Costante, Gianluca Rubin, Udi Banda, Peter Chae, Yooree Chaibub Neto, Elias Dorsey, E. Ray Aydın, Zafer Chen, Aipeng Elo, Laura L. Espino, Carlos Glaab, Enrico Goan, Ethan Golabchi, Fatemeh Noushin Görmez, Yasin Jaakkola, Maria K. Jonnagaddala, Jitendra Klén, Riku Li, Dongmei McDaniel, Christian Perrin, Dimitri Perumal, Thanneer M. Rad, Nastaran Mohammadian Rainaldi, Erin Sapienza, Stefano Schwab, Patrick Shokhirev, Nikolai Venäläinen, Mikko S. Vergara-Diaz, Gloria Zhang, Yuqian Wang, Yuanjia Guan, Yuanfang Brunner, Daniela Bonato, Paolo Mangravite, Lara M. Omberg, Larsson |
author_facet | Sieberts, Solveig K. Schaff, Jennifer Duda, Marlena Pataki, Bálint Ármin Sun, Ming Snyder, Phil Daneault, Jean-Francois Parisi, Federico Costante, Gianluca Rubin, Udi Banda, Peter Chae, Yooree Chaibub Neto, Elias Dorsey, E. Ray Aydın, Zafer Chen, Aipeng Elo, Laura L. Espino, Carlos Glaab, Enrico Goan, Ethan Golabchi, Fatemeh Noushin Görmez, Yasin Jaakkola, Maria K. Jonnagaddala, Jitendra Klén, Riku Li, Dongmei McDaniel, Christian Perrin, Dimitri Perumal, Thanneer M. Rad, Nastaran Mohammadian Rainaldi, Erin Sapienza, Stefano Schwab, Patrick Shokhirev, Nikolai Venäläinen, Mikko S. Vergara-Diaz, Gloria Zhang, Yuqian Wang, Yuanjia Guan, Yuanfang Brunner, Daniela Bonato, Paolo Mangravite, Lara M. Omberg, Larsson |
author_sort | Sieberts, Solveig K. |
collection | PubMed |
description | Consumer wearables and sensors are a rich source of data about patients’ daily disease and symptom burden, particularly in the case of movement disorders like Parkinson’s disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC = 0.87), as well as tremor- (best AUPR = 0.75), dyskinesia- (best AUPR = 0.48) and bradykinesia-severity (best AUPR = 0.95). |
format | Online Article Text |
id | pubmed-7979931 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-79799312021-04-12 Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge Sieberts, Solveig K. Schaff, Jennifer Duda, Marlena Pataki, Bálint Ármin Sun, Ming Snyder, Phil Daneault, Jean-Francois Parisi, Federico Costante, Gianluca Rubin, Udi Banda, Peter Chae, Yooree Chaibub Neto, Elias Dorsey, E. Ray Aydın, Zafer Chen, Aipeng Elo, Laura L. Espino, Carlos Glaab, Enrico Goan, Ethan Golabchi, Fatemeh Noushin Görmez, Yasin Jaakkola, Maria K. Jonnagaddala, Jitendra Klén, Riku Li, Dongmei McDaniel, Christian Perrin, Dimitri Perumal, Thanneer M. Rad, Nastaran Mohammadian Rainaldi, Erin Sapienza, Stefano Schwab, Patrick Shokhirev, Nikolai Venäläinen, Mikko S. Vergara-Diaz, Gloria Zhang, Yuqian Wang, Yuanjia Guan, Yuanfang Brunner, Daniela Bonato, Paolo Mangravite, Lara M. Omberg, Larsson NPJ Digit Med Article Consumer wearables and sensors are a rich source of data about patients’ daily disease and symptom burden, particularly in the case of movement disorders like Parkinson’s disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC = 0.87), as well as tremor- (best AUPR = 0.75), dyskinesia- (best AUPR = 0.48) and bradykinesia-severity (best AUPR = 0.95). Nature Publishing Group UK 2021-03-19 /pmc/articles/PMC7979931/ /pubmed/33742069 http://dx.doi.org/10.1038/s41746-021-00414-7 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Sieberts, Solveig K. Schaff, Jennifer Duda, Marlena Pataki, Bálint Ármin Sun, Ming Snyder, Phil Daneault, Jean-Francois Parisi, Federico Costante, Gianluca Rubin, Udi Banda, Peter Chae, Yooree Chaibub Neto, Elias Dorsey, E. Ray Aydın, Zafer Chen, Aipeng Elo, Laura L. Espino, Carlos Glaab, Enrico Goan, Ethan Golabchi, Fatemeh Noushin Görmez, Yasin Jaakkola, Maria K. Jonnagaddala, Jitendra Klén, Riku Li, Dongmei McDaniel, Christian Perrin, Dimitri Perumal, Thanneer M. Rad, Nastaran Mohammadian Rainaldi, Erin Sapienza, Stefano Schwab, Patrick Shokhirev, Nikolai Venäläinen, Mikko S. Vergara-Diaz, Gloria Zhang, Yuqian Wang, Yuanjia Guan, Yuanfang Brunner, Daniela Bonato, Paolo Mangravite, Lara M. Omberg, Larsson Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge |
title | Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge |
title_full | Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge |
title_fullStr | Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge |
title_full_unstemmed | Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge |
title_short | Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge |
title_sort | crowdsourcing digital health measures to predict parkinson’s disease severity: the parkinson’s disease digital biomarker dream challenge |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979931/ https://www.ncbi.nlm.nih.gov/pubmed/33742069 http://dx.doi.org/10.1038/s41746-021-00414-7 |
work_keys_str_mv | AT siebertssolveigk crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT schaffjennifer crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT dudamarlena crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT patakibalintarmin crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT sunming crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT snyderphil crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT daneaultjeanfrancois crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT parisifederico crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT costantegianluca crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT rubinudi crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT bandapeter crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT chaeyooree crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT chaibubnetoelias crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT dorseyeray crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT aydınzafer crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT chenaipeng crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT elolaural crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT espinocarlos crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT glaabenrico crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT goanethan crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT golabchifatemehnoushin crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT gormezyasin crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT jaakkolamariak crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT jonnagaddalajitendra crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT klenriku crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT lidongmei crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT mcdanielchristian crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT perrindimitri crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT perumalthanneerm crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT radnastaranmohammadian crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT rainaldierin crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT sapienzastefano crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT schwabpatrick crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT shokhirevnikolai crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT venalainenmikkos crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT vergaradiazgloria crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT zhangyuqian crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT wangyuanjia crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT guanyuanfang crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT brunnerdaniela crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT bonatopaolo crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT mangravitelaram crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge AT omberglarsson crowdsourcingdigitalhealthmeasurestopredictparkinsonsdiseaseseveritytheparkinsonsdiseasedigitalbiomarkerdreamchallenge |