Cargando…
Combat COVID-19 infodemic using explainable natural language processing models
Misinformation of COVID-19 is prevalent on social media as the pandemic unfolds, and the associated risks are extremely high. Thus, it is critical to detect and combat such misinformation. Recently, deep learning models using natural language processing techniques, such as BERT (Bidirectional Encode...
Autores principales: | Ayoub, Jackie, Yang, X. Jessie, Zhou, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7980090/ https://www.ncbi.nlm.nih.gov/pubmed/33776192 http://dx.doi.org/10.1016/j.ipm.2021.102569 |
Ejemplares similares
-
Combating the Infodemic: A Chinese Infodemic Dataset for Misinformation Identification
por: Luo, Jia, et al.
Publicado: (2021) -
Combating the COVID-19 infodemic using Prompt-Based curriculum learning
por: Peng, Zifan, et al.
Publicado: (2023) -
Rapid Scholarly Dissemination and Cardiovascular Community Engagement to Combat the Infodemic of the COVID-19 Pandemic
por: Vervoort, Dominique, et al.
Publicado: (2020) -
Combating the infodemic: COVID-19 induced fake news recognition in social media networks
por: Biradar, Shankar, et al.
Publicado: (2022) -
Explaining education-based difference in systematic processing of COVID-19 information: Insights into global recovery from infodemic
por: Huang, Qing, et al.
Publicado: (2022)