Cargando…
SeqEnhDL: sequence-based classification of cell type-specific enhancers using deep learning models
OBJECTIVE: To address the challenge of computational identification of cell type-specific regulatory elements on a genome-wide scale. RESULTS: We propose SeqEnhDL, a deep learning framework for classifying cell type-specific enhancers based on sequence features. DNA sequences of “strong enhancer” ch...
Autores principales: | Wang, Yupeng, Jaime-Lara, Rosario B., Roy, Abhrarup, Sun, Ying, Liu, Xinyue, Joseph, Paule V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7980595/ https://www.ncbi.nlm.nih.gov/pubmed/33741075 http://dx.doi.org/10.1186/s13104-021-05518-7 |
Ejemplares similares
-
Gene co-expression networks are associated with obesity-related traits in kidney transplant recipients
por: Jaime-Lara, Rosario B., et al.
Publicado: (2020) -
HBV mutations in EnhII/BCP/PC region contribute to the prognosis of hepatocellular carcinoma
por: Ge, Zijun, et al.
Publicado: (2019) -
EnhFFL: A database of enhancer mediated feed-forward loops for human and mouse
por: Kang, Ran, et al.
Publicado: (2021) -
ENhAncing Lifestyle Behaviors in EndometriaL CancEr (ENABLE): A Pilot Randomized Controlled Trial
por: Edbrooke, Lara, et al.
Publicado: (2022) -
InstantDL: an easy-to-use deep learning pipeline for image segmentation and classification
por: Waibel, Dominik Jens Elias, et al.
Publicado: (2021)